Time Resolved Fluorescence Spectroscopy and Microscopy
Request form for external booking (Sample and analysis details)
Make
1) TCSPC- M/s. Horiba Scientific 2) Microtime 200 - M/s. PicoQuant
Model
1) TCSPC - DeltaFlex TCSPC Fluorescence Lifetime System. 2) Microtime 200 Fluorescence Microscope System
Facility Status
Working
Date of Installation
Facility Management Division
Institute Central Research Facilities (ICRF)

.

Category

  • Microscopy and Imaging » Optical Microscopy
  • Spectroscopy and Spectrometry » Optical Spectroscopy

Booking Details

Booking available for
Internal and External Both
Available Equipment/ Mode of use
TCSPC : Two modes are available- Reverse Mode and Forward Mode MicroTime 200: Fluorescence Lifetime Imaging Microscopy (FLIM) and Fluorescence Correlation spectroscopy (FCS)

Facility Management Team and Location

Faculty In Charge
Prof. Arindam Chowdhury, Chemistry
Email Ids: achowdhury@iitb.ac.in, arindam@chem.iitb.ac.in
Contact No: 022-2576-7154
Co-convenors
Prof. Subhabrata Dhar, Physics
Prof. Shobha Shukla, MEMS
Prof. Samir Maji, BSBE
Prof. Kasturi Saha, EE
Prof. Dipanshu Bansal, Mechanical Engineering
Prof. Ishita Sengupta, Chemistry
Facility Manager
Prof. Arindam Chowdhury, Chemistry
Email Ids: achowdhury@iitb.ac.in, arindam@chem.iitb.ac.in
Contact No: 022-2576-7154
Facility Operator
Ms. Reshma Poojari, reshmap@iitb.ac.in, 6895
Facility Management Members
Prof. Arindam Chowdhury, Chemistry, (Convener)
Department
CRNTS
Lab Email ID
trfs@iitb.ac.in , trfm@iitb.ac.in
Facility Location
Room No-210-B, TRFSM Facility, 1st Floor, Sophisticated Analytical Instrument Facility/ Centre for Research in Nanotechnology and Science, I.I.T. Bombay, Powai, Mumbai - 400076
Lab Phone No
022-2159-6895

Facility Features, Working Principle and Specifications

Facility Description

Facility Description

This "Time Resolved Fluorescence Spectroscopy and Microscopy" (TRFSM) facility was installed in the year 2019, in the department of “Center for Research in Nano Technology and Science/ Sophisticated Analytical Instrument Facility" (CRNTS/ SAIF) under Central Facility. The Facility is open for all IIT Bombay internal users along with other external user categories which includes Institutions, National Laboratory, RnD, Industry & also Non-Govt. Agency

In our TRFSM Facility, we have two instruments i.e Time Correlated Single Photon Counting  (TCSPC)  system , where we get Fluorescence Lifetime and in Microtime 200 Fluorescence Microscope System, FLIM and FCS techniques can be done.   

Features Working Principle

   Features of TCSPC:

  • Up to 1,000 measurements per second- ideal for kinetics studies
  • monochromator wavelength selection

Measurement modes

  • Lifetime – measure 60 ps to 1-2 microseconds
  • Anisotropy – reconvolution analysis to resolve shorter rotational correlation times.
  • Time-Resolved Emission Spectra (TRES) – Collect up to 100 wavelength dependent decays.
  • Steady-State.
  • Features of MicroTime 200 : 
  • Complete confocal system with laser combining unit, inverted microscope body, and dual-channel detection unit
  • Turn-key diode lasers for multicolor excitation of 405, 440, 532 and 640 nm
  • Two parallel detection channels using application-optimized detection with SPADs.
  • Time-Correlated-Single Photon Counting (TCSPC) and TTTR mode for investigation of fast dynamics in FCS and FLIM
  • Piezo scanning for 2D- and 3D-lifetime imaging and accurate point positioning
  • Data acquisition, analysis and visualization software SymPhoTime 64

Principle of TCSPC:

Time-correlated single photon counting (TCSPC) is a common technique to measure fluorescence decays in the time domain. In principle, single photon events are detected, and their time of arrival is correlated to the laser pulse, which was used for excitation of the sample. 

Principle of Fluorescence Lifetime Imaging Microscope (FLIM):

FLIM is a fluorescence imaging technique that resolves and displays the lifetimes of individual fluorophores rather than their emission spectra. The fluorescence lifetime is defined as the average time that a molecule remains in an excited state prior to returning to the ground state by emitting a photon. 

Principle of Fluorescence Correlation Spectroscopy (FCS):

Fluorescence Correlation Spectroscopy (FCS) is a correlation analysis of temporal fluctuations of the fluorescence intensity. FCS enables the determination of important biochemical parameters such as the concentration and size or shape of the particle (molecule) or viscosity of their environment

Body Specification

SYSTEM/ TECHNICAL SPECIFICATIONS:

1) Instrument specifications (Company Name) - M/s. Horiba

2) Model - DeltaFlex TCSPC, Horiba

3) Repetition rate - 80 MHz i.e 8 MHz (8×106 photons per second), adjustable from the RF in the Harmonic Generation Module

4) Type of light source used for the excitation - Mai Tai laser source 

5) Laser line/ pulse width - 100 fs

6) Prompt FWHM- 60-100ps

7)  MaiTai Tuning Range - 690-1040 nm

8) Excitation wavelength sets available for TCSPC measurements are- 275-315 nm and 365-520 nm. 

9)  In FLIM, four excitation sources are available - 405, 436, 532 & 640 nm.

10)  Minimum Lifetime - 50ps

11) Maximum lifetime - Few microsecond is possible i.e tac range can go upto 2 microsecond.

 

Instructions for Registration, Sample Preparation, User Instructions and Precautionary Measures

Instructions for Registration

Registration Process: 

Internal Users:

Users within IIT Bombay can apply from http://drona.ircc.iitb.ac.in. The form should be completely filled up and all the sample details must be provided as indicated in the requisition form. Samples should be brought by the user at the allotted time and the user should be present at the time of analysis by taking prior appointments.

For TCSPC, maximum of 10 decays can be recorded per booking. The charges mentioned in the form are per decay recorded.

➢ For FLIM, the slot is of 2 hours and maximum 4 number of samples are allowed in a slot, the charges mentioned are for per slot.

External Users:

Since the registration portal is not accessible from outside IIT Bombay, External users must send a mail at the respective email id- trfs@iitb.ac.in for registration. Students can be either present for the analysis or send via post at our facility address for sample analysis at following address: “Prof. Arindam Chowdhury, Facility-in-charge, TRFSM Facility, Room no. 210-B, First Floor, CRNTS/SAIF Building, IIT Bombay, Powai, Mumbai – 400076” .

This below process is the same for both internal and external users. Following sample details should be mentioned. Users have to select the type of measurements:

  1. Time Correlated Single Photon Counting (TCSPC)

  (No of decays, Excitation wavelengths ranges are from 275-315 nm and 365-520 nm, Emission wavelength, type of sample-solid/liquid)

  1. Fluorescence Lifetime Imaging Microscopy (FLIM)/ Fluorescence correlation Spectroscopy (FCS) 

  (No of samples, excitation wavelengths- 405,440,532,640 nm, Emission wavelength, type of sample-solid/liquid, description of the sample to be imaged, fluorophores present in the sample) 

Appointment: The users will be informed about their date and time slot by email.

Sample Submission: Samples are to be submitted at the time of registration or brought along on the date of their appointment for sample analysis. They can come in-person or can send their samples along with a letter from their Institute Original Letter Head for registration stating that the analysis is for research purposes. The letter should be addressed to Prof.Arindam Chowdhury (Incharge), Dept of Chemistry, IIT Bombay, Powai, Mumbai-400076

Users have to submit a receipt of payment along with the registration form and samples or else send through email also.

Results: Expected time for sending the result is at least three to four weeks after receiving the samples, depending on the sample load at the facility.

After the data acquisition is done the results will be sent by email for users.

Instruction for Sample Preparation

For TCSPC:

 For solid powder samples 10/15 mg of sample will work and for solution 10-50 μM of sample in your preferred solvent.

For MicroTime 200:

1)Solution samples should be well dispersed.  

2)Samples for microscopy experiments should be sealed between glass slide and coverslip

3) For any further related query, kindly contact on Email: trfs@iitb.ac.in

Contact: 022-2159-6895

User Instructions and Precautionary Measures

1) For internal users, the designated lab operator who has received training for handling the instruments will be present for sample analysis.

2) Users are requested to bring all required samples, solvents, distilled water and washing acetone (if required), micropipettes and tips, cuvettes etc. For the analysis.

Charges for Analytical Services in Different Categories

Usage Charges

EXTERNAL CHARGES FOR USER CATEGORIES:

 

Basic Charges+ GST*(as applicable)

 

 

External Academic Institutions

National Labs and RnD

Industry & Non-Govt. Agency

TCSPC

Rs 177/-per Decay (inclusive of GST)

Rs 354/-per Decay (inclusive of GST)

Rs 708/-per Decay (inclusive of GST)

FLIM

Rs 1770/-per Slot (inclusive of GST)

Rs  3540/-per Slot (inclusive of GST)

Rs 5310/-per Slot (inclusive of GST)

 

 

Note: *GST Rate as on 24-12-2020 (Please add GST charges as applicable)

If the recipient of report is from Maharashtra:                                                               9%CGST+9%SGST

 If the recipient of report is from outside Maharashtra:                                                  18% IGST

 

 

INTERNAL CHARGES FOR IITB USERS:

 

 

 

Charges Per Decay/ Slot

Details (1Slot = 3hours)

TCSPC

Rs 75/-per Decay (exclusive of GST)

-

FLIM/FCS

Rs 350/- per Slot (exclusive of GST)

3 hours and maximum 4 number of samples are allowed in a slot

 

Applications

Application of TCSPC:

  • Determination of Fluorescence lifetime.

Applications of MicroTime 200:

  • Single Molecule Spectroscopy/Detection
  • Fluorescence Lifetime Imaging (FLIM)
  • Fluorescence Correlation Spectroscopy (FCS)
  • Fluorescence Lifetime Correlation Spectroscopy (FLCS)
  • Foerster Resonance Energy Transfer (FRET)
  • Fluorescence Anisotropy (Polarization)
  • Time-Resolved Photoluminescence (TRPL)

Sample Details

Chemical allowed

Not applicable

Gases allowed

NO

Substrate Dimension

Not applicable

Target dimension

Not applicable

Contamination remarks

NIL

Precursors/ Targets allowed

Not applicable

SOP, Lab Policies and Other Details

Training and Other Policy Documents

Publications

1) Kistwal, T.; Mukhopadhyay, A.; Dasgupta, S.; Sharma, K. P.; Datta, A. Ultraslow Biological Water-Like Dynamics in Waterless Liquid Protein. J Phys Chem Lett 2022, 13 (19), 4389–4393. https://doi.org/10.1021/acs.jpclett.2c00702.

2) Das, S.; Das, S.; Singh, A. K.; Datta, A. 3-Aminoquinoline: A Turn-on Fluorescent Probe for Preferential Solvation in Binary Solvent Mixtures. Methods Appl Fluoresc2022, 10 (3), 034007. https://doi.org/10.1088/2050-6120/ac784d.

3) Gogoi, H.; Pathak, S. S.; Dasgupta, S.; Panchakarla, L. S.; Nath, S.; Datta, A. Exciton Dynamics in Colloidal CdS Quantum Dots with Intense and Stokes Shifted Photoluminescence in a Single Decay Channel. J Phys Chem Lett 2022, 13 (29), 6770–6776. https://doi.org/10.1021/acs.jpclett.2c01623.

4) Adhyapak, P.; Dong, W.; Dasgupta, S.; Dutta, A.; Duan, M.; Kapoor, S. Lipid Clustering in Mycobacterial Cell Envelope Layers Governs Spatially Resolved Solvation Dynamics. Chem Asian J 2022, 17 (11). https://doi.org/10.1002/asia.202200146.

5) Ahmad, I.; Malik, A. A.; Dar, A. A. Multi-Stimuli-Responsive Organo-Sulfonated Anil and Its Organic Complex. Cryst Growth Des 2022, 22 (11), 6483–6492. https://doi.org/10.1021/acs.cgd.2c00693.

6) Bhagya, R. S.; Sunil, D.; Muthamma, K.; Shetty, P.; Kulkarni, S. D. Water-Based Invisible Green Flexographic Ink for Anti-Counterfeit Applications. Prog Org Coat 2022, 173, 107212. https://doi.org/10.1016/j.porgcoat.2022.107212

7)    Ullal, N.; Lewis, P. M.; Sunil, D.; Kulkarni, S. D.; P.J., A.; K., U. B. Dual Emissive Water-Based Flexo Ink from Tapioca-Derived Carbon Dots for Anti-Counterfeiting Applications. Prog Org Coat 2022, 173, 107233. https://doi.org/10.1016/j.porgcoat.2022.107233.

8)    Singha, P. K.; Kistwal, T.; Datta, A. Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS2 Quantum Dots. J Phys Chem Lett 2023, 4289–4296. https://doi.org/10.1021/acs.jpclett.3c00467.

 

9) Ali, F.; Das, S.; Bhandari, P.; Datta, A. Mechanism of Enhancement of Stokes Shifted Photoluminescence Quantum Yield and Lifetime from Ag(I)-Doped CdSeNanotetrapods: Implications for Optoelectronic and Photonic Devices. ACS Appl Nano Mater 2023, 6 (8), 6670–6677. https://doi.org/10.1021/acsanm.3c00385.

 

 

10) Kistwal, T.; Dasgupta, S.; Chowdhury, A.; Datta, A. Disruption of Aggregates of a Zn2+-Complex of a Schiff Base in Water by Surfactants: Insights from Fluorescence Spectroscopy in Ensemble and Single Molecule Levels. Journal of the Indian Chemical Society 2023, 100 (5), 100986. https://doi.org/10.1016/j.jics.2023.100986.

 11) Dasgupta, S.; Chowdhury, A.; Sahoo, D. K.; Datta, A. Interplay of Conformational Relaxation and Hydrogen Bond Dynamics in the Excited States of Fluorescent Schiff Base Anions. Physical Chemistry Chemical Physics 2023, 25 (1), 304–313. https://doi.org/10.1039/D2CP05007B.

12) Ali, F.; Hande, P. E.; Kumar Sahoo, D.; Roy, R.; Gharpure, S. J.; Datta, A. Surfactant-Induced Fluorescence Enhancement of a Quinoline-Coumarin Derivative in Aqueous Solutions and Dropcast Films. J PhotochemPhotobiolA Chem 2023, 434, 114209. https://doi.org/10.1016/j.jphotochem.2022.114209.

13) Sahoo, D. K.; Dasgupta, S.; Kistwal, T.; Datta, A. Fluorescence Monitoring of Binding of a Zn (II) Complex of a Schiff Base with Human Serum Albumin. Int J Biol Macromol2023, 226, 1515–1522. https://doi.org/10.1016/j.ijbiomac.2022.11.263.

 14) Das, S.; Rana, G.; Ali, F.; Datta, A. Single Particle Level Dynamics of Photoactivation and Suppression of Auger Recombination in Aqueous Cu-Doped CdS Quantum Dots. Nanoscale 2023, 15 (9), 4469–4476. https://doi.org/10.1039/D2NR06688B.

15) Bag, R.; Sikdar, Y.; Sahu, S.; Majharul Islam, M.; Mandal, S.; Goswami, S. Experimental and Theoretical Exploration of ESIPT in a Systematically Constructed Series of Benzimidazole Based Schiff Base Probes: Application as Chemosensors. Chemistry – A European Journal 2023, 29 (22). https://doi.org/10.1002/chem.202203399.

16)  Chawre, Y.; Satnami, M. L.; Kujur, A. B.; Ghosh, K. K.; Nagwanshi, R.; Karbhal, I.; Pervez, S.; Deb, M. K. Förster Resonance Energy Transfer between Multicolor Emissive N-Doped Carbon Quantum Dots and Gold Nanorods for the Detection of H 2 O 2 , Glucose, Glutathione, and Acetylcholinesterase. ACS Appl Nano Mater 2023. https://doi.org/10.1021/acsanm.3c01518.

17)  Bhaskar, S.; Thacharakkal, D.; Ramamurthy, S. S.; Subramaniam, C. Metal–Dielectric Interfacial Engineering with Mesoporous Nano-Carbon Florets for 1000-Fold Fluorescence Enhancements: Smartphone-Enabled Visual Detection of Perindopril Erbumine at a Single-Molecular Level. ACS Sustain Chem Eng 2023, 11 (1), 78–91. https://doi.org/10.1021/acssuschemeng.2c04064.

18)  Harshita; Park, T.; Kailasa, S. K. Microwave‐assisted Synthesis of Blue Fluorescent Molybdenum Nanoclusters with Maltose‐cysteine Schiff Base for Detection of Myoglobin and Γ‐aminobutyric Acid in Biofluids. Luminescence 2023. https://doi.org/10.1002/bio.4454.

19) Sebastian, A.; Aarya; Sarangi, B. R.; Sen Mojumdar, S. Lysozyme Protected Copper Nano-Cluster: A Photo-Switch for the Selective Sensing of Fe2+. J PhotochemPhotobiolA Chem 2023, 436, 114378. https://doi.org/10.1016/j.jphotochem.2022.114378.

20)  Chauhan, A.; Ghalta, R.; Bal, R.; Srivastava, R. Thermocatalytic and Photocatalytic Chemoselective Reduction of Cinnamaldehyde to Cinnamyl Alcohol and Hydrocinnamaldehyde over Ru@ZnO/CN. J Mater Chem A Mater 2023. https://doi.org/10.1039/D3TA02000B.

21)  Vadia, F. Y.; Potnuru, T. R.; Malek, N. I.; Park, T. J.; Kailasa, S. K. Fluorescent Carbon Dots Derived from Plumeria Obtusa for the Detection of Metribuzin. J Clust Sci2023. https://doi.org/10.1007/s10876-023-02425-8.

22) Jamuna, N. A.; Kamalakshan, A.; Dandekar, B. R.; ChittilappillyDevassy, A. M.; Mondal, J.; Mandal, S. Mechanistic Insight into the Amyloid Fibrillation Inhibition of Hen Egg White Lysozyme by Three Different Bile Acids. J Phys Chem B2023127 (10), 2198–2213. https://doi.org/10.1021/acs.jpcb.3c00274.

23) Ghinaiya, N.V., Mehta, V.N., Jha, S. et al. Synthesis of Greenish-Yellow Fluorescent Copper Nanocluster for the Selective and Sensitive Detection of Fipronil Pesticide in Vegetables and Grain Samples. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03464-0

24) Joshi, Dharaben J., Naved I. Malek, Tae Jung Park, and Suresh Kumar Kailasa. "Ultrasonication-assisted synthesis of fluorescent borophene quantum dots for sensing of dehydroepiandrosterone biomarker." Journal of Molecular Liquids 385 (2023): 122294.

25)     Binit Mallick, Dipankar Saha, Anindya Datta, and Swaroop Ganguly. “Noninvasive and Contactless Characterization of Electronic Properties at the Semiconductor/Dielectric Interface Using Optical Second-Harmonic Generation”. ACS Applied Materials & Interfaces 2023 15 (32), 38888-38900. DOI: 10.1021/acsami.3c04985

26) Prakash, S.; Behera, T.; Chowdhury, A.; Datta, A. Microscopic Perspective of Synergy between Localized Surface Plasmon Resonance and Disruption of Dye Aggregates in Metal Nanoparticle-Enhanced Fluorescence. ACS Applied Nano Materials 20236 (19), 17539–17547. DOI:10.1021/acsanm.3c02734.

27)  Kumari, Maya, Souradip Dasgupta, Sanjib Panda, Sudip Kumar Bera, Anindya Datta, and Goutam Kumar Lahiri. "Unique Metal–Ligand Interplay in Directing Discrete and Polymeric Derivatives of Isomeric Azole-Carboxylate. Varying Electronic Form, C–C Coupling, and Receptor Feature." Inorganic Chemistry 62, no. 20 (2023): 7779-7794. https://doi.org/10.1021/acs.inorgchem.3c00418   

28) Adhyapak, Pranav, Kuan Liang, Mojie Duan, and Shobhna Kapoor. "Effect of Host Cholesterol on the Membrane Dynamics of Outer Membrane Lipids of Mycobacteria." Chemistry–An Asian Journal 18, no. 23 (2023): e202300697.

29)   Rajput, D., Mahalingavelar, P., Soppina, V. and Kanvah, S., 2023. Improved lipophilic probe for visualizing lipid droplets in erastin-induced ferroptosis. Organic & Biomolecular Chemistry21(42), pp.8554-8562.

30)   Srivatsav  Aswin T., and Shobhna Kapoor. "Biophysical Interaction Landscape of Mycobacterial Mycolic Acids and Phenolic Glycolipids with Host Macrophage Membranes." ACS Applied Bio Materials 6, no. 12 (2023): 5555-5562.DOI: 10.1021/acsabm.3c00748

31)  Vadia, F. Y.; Ghosh, S.; Mehta, V. N.; Jha, S.; Malek, N. I.; Park, T. J.; Kailasa, S. K. Fluorescence “Turn off-on” Detection of Fe3+ and Propiconazole Pesticide Using Blue Emissive Carbon Dots from Lemon Peel. Food Chemistry 2023428, 136796. DOI:10.1016/j.foodchem.2023.136796.

32)   Vadia, F. Y., Mehta, V. N., Jha, S., Park, T. J., Malek, N. I., & Kailasa, S. K. (2023d). Development of simple fluorescence analytical strategy for the detection of Triazophos using greenish-yellow emissive carbon dots derived from Curcuma Longa. Journal of Fluorescence. https://doi.org/10.1007/s10895-023-03548-x

33)  Vadia, F. Y., Johny, J. S., Malek, N. I., & Kailasa, S. K. (2023). Deltamethrin and fenvalerate in vegetables and Rice. Sustainable Food Technology1(5), 762–772. https://doi.org/10.1039/d3fb00117b

34)  Patel, M. R., Park, T. J., & Kailasa, S. K. (2023). Synthesis of fluorescent boron carbon nitride nanosheets for the detection of cu2+ ions and epinephrine. New Journal of Chemistry47(19), 9279–9287. https://doi.org/10.1039/d3nj00704a

35)  Raval, J. B., Mehta, V. N., Jha, S., Park, T. J., & Kailasa, S. K. (2023a). Biosynthesis of green-emissive copper nanoclusters from plectranthus scutellarioides extract for the detection of Terbufos in Carrot and water samples. ACS Food Science & Technology, 4(1), 272–281. https://doi.org/10.1021/acsfoodscitech.3c00539

36)   Harshita, Jha, S., Park, T.-J., & Kailasa, S. K. (2023). Synthesis of molybdenum nanoclusters from vitex negundo leaves for sensing epinephrine in a pharmaceutical composition. Sensors & Diagnostics, 2(4), 893–901. https://doi.org/10.1039/d3sd00063j

37)   Harshita, Park, T. J., & Kailasa, S. K. (2023). Microwave-assisted synthesis of green fluorescent copper nanoclusters: A novel approach for sensing of hydroxyl radicals and pyrophosphate ions via a “turn-off–on” mechanism. New Journal of Chemistry47(43), 20038–20047. https://doi.org/10.1039/d3nj03751g

38)    Ghinaiya, N. V., Mehta, V. N., Jha, S., Park, T. J., & Kailasa, S. K. (2023). Synthesis of greenish-yellow fluorescent copper Nanocluster for the selective and sensitive detection of fipronil pesticide in vegetables and grain samples. Journal of Fluorescence. https://doi.org/10.1007/s10895-023-03464-0

39)   Ghinaiya, N. V., Park, T. J., & Kailasa, S. K. (2023). Synthesis of bright blue fluorescence and water-dispersible cesium lead halide perovskite quantum dots for the selective detection of Pendimethalin Pesticide. Journal of Photochemistry and Photobiology A: Chemistry444, 114980. https://doi.org/10.1016/j.jphotochem.2023.114980

40)   Sadhu, V. A., Jha, S., Park, T. J., & Kailasa, S. K. (2023). Synthesis of copper nanoclusters from bacopa monnieri leaves for fluorescence sensing of dichlorvos. Luminescence, 38(11), 1872–1882. https://doi.org/10.1002/bio.4575

41)   Dahiwadkar, R., Dubey, G., Shaik, A., Jana, P., Thiruvenkatam, V., & Kanvah, S. (2023b). Halogen-bonded co-crystals with AIE-active α-cyanostilbenes. New Journal of Chemistry47(24), 11685–11696. https://doi.org/10.1039/d3nj00333g

42)  Dubey, Y., Mahalingavelar, P., Rajput, D., Shewale, D. J., Soppina, V., & Kanvah, S. (2023). Fluorescent Styryl pyridine-n-oxide probes for imaging lipid droplets. Organic & Biomolecular Chemistry21(41), 8393–8402. https://doi.org/10.1039/d3ob01365k .      

43) Revabhai, P. M.; Park, T. J.; Kailasa, S. K. One-Step Hydrothermal Approach for Synthesis of Hydroxy Functionalized Boron Nitride Nanosheets for Fluorescence Detection of Uric Acid in Biological Samples. Inorganic Chemistry Communications 2023148, 110346. DOI:10.1016/j.inoche.2022.110346.

 

44) Vibhuti Atulbhai, S.; Swapna, B.; Kumar Kailasa, S. Microwave Synthesis of Blue Emissive Carbon Dots from 5-Sulpho Anthranilic Acid and 1,5-Diphenyl Carbazide for Sensing of Levocetirizine and Niflumic Acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023287, 122098. DOI:10.1016/j.saa.2022.122098.

 

45) Joshi, Dharaben J., Sanjay Jha, Naved I. Malek, Tae Jung Park, and Suresh Kumar Kailasa. "Rational design of niobium carbide MXene quantum dots decorated with arginine for the fluorescence sensing of superoxide anion in Saccharomyces cerevisiae cells." Sensors and Actuators B: Chemical 404 (2024): 135226.

46)   Pandey, Priya, Mrinalini G. Walawalkar, and Ramaswamy Murugavel. "Luminescent 8-hydroxyquinoline derived tin (IV) complexes." Journal of Organometallic Chemistry 1007 (2024): 123023. DOI:10.1016/j.jorganchem.2024.123023

47) Patel, Mayurkumar Revabhai, Tae Jung Park, and Suresh Kumar Kailasa. "Eu3+ ion-doped strontium vanadate perovskite quantum dots-based novel fluorescent nanosensor for selective detection of creatinine in biological samples." Journal of Photochemistry and Photobiology A: Chemistry 449 (2024): 115376.

48) Singh, P. D., Murthy, Z. V., & Kailasa, S. K. (2024). Zinc nitride quantum dots as an efficient probe for simultaneous fluorescence detection of cu2+ and MN2+ ions in water samples. Microchimica Acta191(3). https://doi.org/10.1007/s00604-024-06247-x

49) Sadhu, V. A., Jha, S., Park, T. J., & Kailasa, S. K. (2024a). Green emissive molybdenum nanoclusters for selective and sensitive detection of hydroxyl radical in water samples. Journal of Fluorescence. https://doi.org/10.1007/s10895-023-03578-5

50) Sadhu, V. A., Jha, S., Park, T. J., & Kailasa, S. K. (2024a). Fluorescence ‘turn‐off–on’ assays for neomycin sulphate and K+ ions with orange‐red fluorescent molybdenum nanoclusters. Luminescence39(3). https://doi.org/10.1002/bio.4709

51) Nipate, Atul B., and M. Rajeswara Rao. "Pd‐Catalysed Direct Arylation of Distyrylbenzene: Strong Dual‐state Fluorescence and Electrochromism." Chemistry–A European Journal (2024): e202400015.

52) Surana, K.; Panjabi, S. H.; Varade, D.; Deshpande, M. P.; Deshpande, U. P.; Soni, S. S. Low Intensity Photon Driven Sheet Breaking of Reduced Graphene Oxide for Amplified Light Transmission and Dust Repellent Coating. Applied Materials Today 202436, 102012. DOI:10.1016/j.apmt.2023.102012

53) Surana, K.; Bhattacharya, B.; Soni, S. S. Harnessing Infrared Radiation Using Carbon Dots: Photovoltaic Devices Achieving Extraordinary Efficiency under Faint Lighting. Materials Advances 20245 (2), 685–694. DOI:10.1039/d3ma00649b.

 

54) N. Ullal, D. Sunil, S. D. Kulkarni, R. K. Sinha, P. J. Anand, and U. K. Bhat, "Eco-friendly ink formulation of column purified carbon dots from GABA for anticounterfeiting applications," J Photochem Photobiol A Chem, vol. 444, p. 114914, Oct. 2023, doi: 10.1016/J.JPHOTOCHEM.2023.114914