Laser Scanning Confocal Microscope Facility @BSBE
Make
Carl Zeiss, CZ microscopy, Germany
Model
LSM 780
Facility Status
Working
Date of Installation
Facility Management Division
Institute Central Research Facilities (ICRF)

.

Category

  • Microscopy and Imaging » Confocal Microscopy

Booking Details

Booking available for
Internal and External Both
Available Equipment/ Mode of use
1. Single Color Imaging
2. Multi-color Imaging
3. Z-Stacking Imaging
4. Time series Imaging
5. DIC Imaging
6. Lambda mode Imaging
7. FRAP
8. FRET

Facility Management Team and Location

Facility In Charge
Prof. Santanu K Ghosh
santanughosh@iitb.ac.in
022-2576-7766
Facility Operator
Mr. Santosh Panigrahi
spanigrahi@iitb.ac.in
confocal001@gmail.com
022-2159-6746
Facility Management Members
• Prof. Santanu K. Ghosh (BSBE)
santanughosh@iitb.ac.in
022-2576-7766
• Prof. Anirban Banerjee (BSBE)
abanerjee@iitb.ac.in
022-2576-7794
• Prof. Rajesh Patkar (BSBE)
rajeshpatkar@iitb.ac.in
022-2576-7772
• Prof. Shobhna Kapoor (Chemistry)
shobhnakapoor@chem.iitb.ac.in
022-2576-6180
• Prof. Abhijit Majumder (Chemical)
abhijitm@iitb.ac.in
022-2576-7237
Department
Biosciences and Bioengineering
Lab Email ID
lsmconfocal@iitb.ac.in
Facility Location
Room no. 05, Central Instrumentation Room, Ground floor Biosciences & Bioengineering Department. I.I.T. Bombay, Powai, Mumbai - 400 076.
Lab Phone No
022-2159-6746

Facility Features, Working Principle and Specifications

Facility Description

Facility Description

Laser scanning confocal microscopy employs spatial filtering techniques to eliminate any out-of-focus light in specimens with finite thickness and leads to the formation of high-resolution images.

Features Working Principle

Working Principle

Light coming from multiple out-of-focus planes leads to blurred images or loss of information during conventional (widefield) fluorescence microscopy. Laser scanning confocal microscopy employs spatial filtering techniques to eliminate any out-of-focus light in specimens with finite thickness and leads to the formation of high-resolution images. A focused laser beam scans the sample in a line-by-line manner in the X-Y plane to generate a 2D image. The focus of the laser is then changed to a different Z-plane and the X-Y scanning operation is repeated. A confocal microscope is able to generate a high-resolution 3D image of a sample with a finite thickness in this manner. It should be noted that the confocal operation is only possible with a laser light source (i.e. coherent source) and not with the normal fluorescent light sources..

 

 

 

Body Specification

 

1. Microscope:

  • Fully motorized and computer-controlled Zeiss Axio-Observer Z1 microscope (inverted) with motorized stage and proprietary Definite Focus technology. 
  • Piezo-driven stage for scanning stages with a maximum travel range of 250 µm.
  • Lateral Resolution(XY) – 250 to 300 nm
  • Axial Reslotuion (Z) – 550 to 600 nm

  

2. Objectives:

  • Plan-apochromat 10X/0.45 NA (air)
  • Plan-apochromat 20X/0.8 NA (air)
  • C-apochromat 40x/1.2 NA (water)
  • Plan-Apochromat 40x/1.3 NA (oil)
  • iPlan-apochromat 63x/1.4 NA (oil)
  • iPlan-apochromat 100x/1.4 (oil) 
  • Note: DIC imaging is possible with the last three objectives.

    

3. Lasers:

  • Multi-line Argon laser (458 nm, 488 nm and 514 nm) @ 25 mW
  • 405 nm Diode laser @ 50 mW
  • 561 nm DPSS laser @ 20 mW
  • 633 nm HeNe laser @ 5 mW
  • Titanium Sapphire Multi-photon laser (720 nm – 920 nm with 3.2 W @ 800 nm)

    

4. Scanning Module : 

  • Up to 8 frames/sec scanning speed at 512 x 512 pixels. 32 channels in a proprietary GaAsP spectral detector (8nm per channel) and two PMT fluorescence channels available.
  • One of the PMTs is low-noise for imaging in the red/far red. One transmission detector for DIC imaging is available.
  • 2-PMT detectors
  • 1 GaAsP detector (For low level signals)
  • T-PMT detector for DIC imaging
  • Imaging till 6k * 6k resolution is possible.

   

 5. Filters :

  • DAPI
  • Alexa Fluor 488
  • Rhodamine.

    

6.Software :

  • Zen 2012 acquisition software from Zeiss with 3D, ROI, FRAP and stitching modules.

     

Instructions for Registration, Sample Preparation, User Instructions and Precautionary Measures

Instructions for Registration
 

Guidelines for Booking and Using the LSM Confocal Microscope

  1. Registration and Cancellations

    • All bookings must be made online through the IRCC webpage.
    • If you need to cancel your slot, email lsmconfocal@iitb.ac.in immediately, providing a valid reason.
  2. Slot Allocation

    • Slots are allocated on a first-come, first-served basis.
    • Available time slots:
      • 9 AM - 11 AM
      • 11 AM - 1 PM
      • 2 PM - 4 PM
      • 4 PM - 6 PM
    • For experiments requiring extended time, email lsmconfocal@iitb.ac.in to discuss your specific needs.Register online through the IRCC webpage.
    • After the slotbooking request is accepted, please contact the technical staff (Santosh Panigrahi or Pradip Shinde at 6746) to discuss the details of your experiment.
  3. Form Submission

    1. Complete the registration form with all required details to help us understand your experimental requirements.
  4. Non-Office Hours Usage

    1. For booking slots outside office hours, email lsmconfocal@iitb.ac.in with the TA you consulted in CC.
    2. Approval from the TA is required before the slot can be booked.
    3. Online registration is mandatory for non-office hour bookings, which are allocated in 3-hour blocks.

    By adhering to these guidelines, we can ensure the smooth operation and efficient use of the LSM Confocal Microscope facility.

Instruction for Sample Preparation

 

Fixed Samples:

  • Fixed samples must be sealed securely between a glass slide and a coverslip.
  • Samples without proper sealing will not be accepted.

     

Live Samples:

  • Use 35 mm diameter glass-bottom petri dishes (commonly referred to as confocal dishes) for live sample imaging.
  • If using oil immersion objectives, ensure you use specialized imaging petri dishes with coverslip bottoms.

     

Imaging with Lower Magnification Objectives:

  • Regular petri dishes are permitted for imaging with lower magnification objectives.

     

Well-Plate Samples:

  • For imaging with a 10x magnification objective, standard well-plates can be used.
  • For higher magnification objectives, use glass-bottom well-plates to ensure optimal imaging quality.

     


 

User Instructions and Precautionary Measures

 

  1. User Presence

    1. Users must remain present throughout their imaging session. Substitutions are not allowed.
    2. In case of emergencies, notify lsmconfocal@iitb.ac.in, keeping your guide in CC, and nominate a replacement in your absence
  2. Slot Cancellation

    1. To cancel a slot, email lsmconfocal@iitb.ac.in, keeping your guide in CC, and provide a clear explanation.
  3. Rescheduling and No-Show Policy

    1. A slot can be rescheduled only once. Further requests will result in the slot being marked as completed, with charges applied.
    2. If a user fails to attend their slot without prior notice, it will be considered completed, and charges will be deducted
  4. Data Transfer Policy

    1. USB drives are strictly prohibited to prevent virus-related issues.
    2. Please bring a new, blank CD to transfer your data.
    3. All data must be transferred within 7 days of imaging, with no exceptions.
    4. Users may upload their data to personal drives from the analysis system outside the confocal facility.

     

Charges for Analytical Services in Different Categories

Applications

  • Multi-colour imaging, Z-stacks, and 3D image reconstruction are advanced techniques used in microscopy to capture and analyze multiple fluorescent labels in a sample, reconstructing them into three-dimensional models.
  • Time series imaging involves capturing images at intervals, optionally with Z-stack capabilities, to study dynamic processes over time.
  • Tile scanning automates the imaging of different parts of a sample over extended periods, facilitating large-scale data acquisition and analysis.
  • Fluorescence techniques like FRET (Fluorescence Resonance Energy Transfer), FRAP (Fluorescence Recovery After Photobleaching) are used to study molecular interactions, dynamics, and diffusion in live cells.
  • Lambda mode of imaging.
  • Multi-position imaging.
  • All the different modules can be clubbed with each other to cater the need of the experiment.
     

Sample Details

Chemical allowed

NA

Allowed Substrate

NA

Gases allowed

NA

Substrate Dimension

NA

Target dimension

NA

Contamination remarks

NA

Precursors/ Targets allowed

NA

SOP, Lab Policies and Other Details

SOP
LSM 780 SOP.pdf (757.77 KB)

Publications

2017-2018

 

  1. Borse, V., Thakur, M., Sengupta, S., & Srivastava, R. (2017). N-doped multi-fluorescent carbon dots for ‘turn off-on’ silver-biothiol dual sensing and mammalian cell imaging applicationSensors and Actuators B: Chemical248, 481–492. https://doi.org/10.1016/j.snb.2017.03.158 
  2. Chaudhari, R., Dey, V., Narayan, A., Sharma, S., & Patankar, S. (2017). Membrane and luminal proteins reach the apicoplast by different trafficking pathways in the malaria parasite Plasmodium falciparumPeerJ5, e3128. https://doi.org/10.7717/peerj.3128 
  3. Das, S., Kumar, R., Jha, N. N., & Maji, S. K. (2017). Controlled Exposure of Bioactive Growth Factor in 3D Amyloid Hydrogel for Stem Cells Differentiation. Advanced Healthcare Materials6(18). https://doi.org/10.1002/adhm.201700368 
  4. Irfanullah, M., Bhardwaj, N., & Chowdhury, A. (2016). Sensitized luminescence from water-soluble LaF3:Eu nanocrystals via partially-capped 1,10-phenanthroline: Time-gated emission and multiple lifetimesDalton Transactions45(31), 12483–12495. https://doi.org/10.1039/C6DT01917J 
  5. Kumawat, M. K., Thakur, M., Gurung, R. B., & Srivastava, R. (2017). Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular NanothermometryACS   Sustainable    Chemistry &              Engineering,         5(2),                  1382–1391. https://doi.org/10.1021/acssuschemeng.6b01893 
  6. Srivastava, S., & Panda, D. (2017). A centrosomal protein FOR20 regulates microtubule assembly dynamics and plays a role in cell migrationBiochemical Journal474(16), 2841–2859. https://doi.org/10.1042/BCJ20170303 
  7. Thakur, M., Kumawat, M. K., & Srivastava, R. (2017). Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applicationsRSC Advances7(9), 5251–5261. https://doi.org/10.1039/C6RA25976F 


 

2018-2019

 

 

  1. Bhagwat, S., Sontakke, S., K, D., Parte, P., & Jadhav, S. (2018). Chemotactic behavior of spermatozoa captured using a microfluidic chipBiomicrofluidics12(2), 024112. https://doi.org/10.1063/1.5023574 
  2. Bhattacharya, D., Sinha, K., & Panda, D. (2018). Mutation of G51 in SepF impairs FtsZ assembly promoting ability of SepF and retards the division of Mycobacterium smegmatis cellsThe Biochemical Journal475(15), 2473–2489. https://doi.org/10.1042/BCJ20180281 
  3. Chauhan, D. S., Kumawat, M. K., Prasad, R., Reddy, P. K., Dhanka, M., Mishra, S. K., Bahadur, R., Neekhra, S., De, A., & Srivastava, R. (2018). Plasmonic carbon nanohybrids for repetitive and highly localized photothermal cancer therapyColloids and Surfaces. B, Biointerfaces172, 430– 439. https://doi.org/10.1016/j.colsurfb.2018.08.054 
  4. Das, A., Monteiro, M., Barai, A., Kumar, S., & Sen, S. (2017). MMP proteolytic activity regulates cancer invasiveness by modulating integrinsScientific Reports7(1), 14219. https://doi.org/10.1038/s41598-017-14340-w 
  5. Desai, S., Barai, A., Bukhari, A. B., De, A., & Sen, S. (2018). α-Actinin-4 confers radioresistance coupled invasiveness in breast cancer cells through AKT pathwayBiochimica et Biophysica Acta (BBA) - Molecular Cell Research1865(1), 196–208. https://doi.org/10.1016/j.bbamcr.2017.10.006 
  6. George, E., Barai, A., Shirke, P., Majumder, A., & Sen, S. (2018). Engineering interfacial migration by collective tuning of adhesion anisotropy and stiffnessActa Biomaterialia72, 82–93. https://doi.org/10.1016/j.actbio.2018.03.016 
  7. Groundwater, P. W., Narlawar, R., Liao, V. W. Y., Bhattacharya, A., Srivastava, S., Kunal, K., Doddareddy, M., Oza, P. M., Mamidi, R., Marrs, E. C. L., Perry, J. D., Hibbs, D. E., & Panda, D. (2017). A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZBiochemistry56(3), 514–524. https://doi.org/10.1021/acs.biochem.6b00879 
  8. Hire, R. R., Srivastava, S., Davis, M. B., Kumar Konreddy, A., & Panda, D. (2017). Antiproliferative Activity of Crocin Involves Targeting of Microtubules in Breast Cancer CellsScientific Reports7(1), 44984. https://doi.org/10.1038/srep44984 
  9. Hura, N., Naaz, A., Prassanawar, S. S., Guchhait, S. K., & Panda, D. (2018). Drug-Clinical Agent Molecular Hybrid: Synthesis of Diaryl(trifluoromethyl)pyrazoles as Tubulin Targeting Anticancer AgentsACS Omega3(2), 1955–1969. https://doi.org/10.1021/acsomega.7b01784 
  10. Kapoor, A., Barai, A., Thakur, B., Das, A., Patwardhan, S. R., Monteiro, M., Gaikwad, S., Bukhari, A. B., Mogha, P., Majumder, A., De, A., Ray, P., & Sen, S. (2018). Soft drug-resistant ovarian cancer cells migrate via two distinct mechanisms utilizing myosin II-based contractility. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research1865(2), 392–405. https://doi.org/10.1016/j.bbamcr.2017.11.012 
  11. Kumar, A., Naaz, A., Prakasham, A. P., Gangwar, M. K., Butcher, R. J., Panda, D., & Ghosh, P. (2017). Potent Anticancer Activity with High Selectivity of a Chiral Palladium N-Heterocyclic Carbene ComplexACS Omega2(8), 4632–4646. https://doi.org/10.1021/acsomega.7b00688 
  12. Kumar, S., Das, A., Barai, A., & Sen, S. (2018). MMP Secretion Rate and Inter-invadopodia Spacing Collectively Govern Cancer InvasivenessBiophysical Journal114(3), 650. https://doi.org/10.1016/j.bpj.2017.11.3777 
  13. Kureel, S. K., Mogha, P., Khadpekar, A., Kumar, V., Joshi, R., Das, S., Bellare, J., & Majumder, A. (2019). Soft substrate maintains proliferative and adipogenic differentiation potential of human mesenchymal stem cells on long-term expansion by delaying senescence. Biology Open8(4), bio039453. https://doi.org/10.1242/bio.039453 
  14. Prajapati, H. K., Agarwal, M., Mittal, P., & Ghosh, S. K. (2018). Evidence of Zip1 Promoting Sister Kinetochore Mono-orientation During Meiosis in Budding YeastG3 Genes|Genomes|Genetics8(11), 3691–3701. https://doi.org/10.1534/g3.118.200469 
  15. Saxena, N., Mogha, P., Dash, S., Majumder, A., Jadhav, S., & Sen, S. (2018). Matrix elasticity regulates mesenchymal stem cell chemotaxis. Journal of Cell Science131(7), jcs211391. https://doi.org/10.1242/jcs.211391
  16. 16.  Srivastava, S., & Panda, D. (2018). A centrosomal protein STARD9 promotes microtubule stability and regulates spindle microtubule dynamicsCell Cycle (Georgetown, Tex.), 17(16), 2052–2068. https://doi.org/10.1080/15384101.2018.1513764 
  17. Surve, M. V., Bhutda, S., Datey, A., Anil, A., Rawat, S., Pushpakaran, A., Singh, D., Kim, K. S., Chakravortty, D., & Banerjee, A. (2018). Heterogeneity in pneumolysin expression governs the fate of Streptococcus pneumoniae during blood-brain barrier trafficking. PLOS Pathogens14(7), e1007168. https://doi.org/10.1371/journal.ppat.1007168 
  18. Vashisth, P., & Bellare, J. R. (2018). Development of hybrid scaffold with biomimetic 3D architecture for bone regenerationNanomedicine: Nanotechnology, Biology, and Medicine14(4), 1325–1336. https://doi.org/10.1016/j.nano.2018.03.011 
  19. Venugopal, B., Mogha, P., Dhawan, J., & Majumder, A. (2018). Cell density overrides the effect of substrate stiffness on human mesenchymal stem cells’ morphology and proliferationBiomaterials Science6(5), 1109. https://doi.org/10.1039/c7bm00853h 
  20. Verma, S. K., Modi, A., & Bellare, J. (2018). Three-dimensional multiscale fiber matrices: Development and characterization for increased HepG2 functional maintenance for bio- artificial liver applicationBiomaterials Science6(2), 280–291. https://doi.org/10.1039/C7BM00963A 
  21. Verma, S. K., Modi, A., Singh, A. K., Teotia, R., Kadam, S., & Bellare, J. (2018). Functionally coated polyethersulfone hollow fiber membranes: A substrate for enhanced HepG2/C3A functionsColloids  and Surfaces B:                   Biointerfaces,164, 358–369. https://doi.org/10.1016/j.colsurfb.2018.01.038 


 

2019-20

 

  1. Dadhich, R., Singh, A., Menon, A. P., Mishra, M., Athul, C. D., & Kapoor, S. (2019). Biophysical characterization of mycobacterial model membranes and their interaction with rifabutin: Towards lipid-guided drug screening in tuberculosisBiochimica et Biophysica Acta (BBA) - Biomembranes1861(6), 1213–1227. https://doi.org/10.1016/j.bbamem.2019.04.004 
  2. Das, A., Barai, A., Monteiro, M., Kumar, S., & Sen, S. (2019). Nuclear softening is essential for protease-independent migrationMatrix Biology : Journal of the International Society for Matrix Biology82, 4–19. https://doi.org/10.1016/j.matbio.2019.01.001 
  3. Das, S., Srinivasan, S., Srivastava, A., Kumar, S., Das, G., Das, S., Dwivedi, A., Karulkar, A., Makkad, K., Bilala, R., Gupta, A., Sawant, A., Nayak, C., Tayalia, P., & Purwar, R. (2019). DifferentialInfluence of IL-9 and IL-17 on Actin Cytoskeleton Regulates the Migration Potential of Human KeratinocytesJournal of Immunology (Baltimore, Md.: 1950)202(7), 1949–1961. https://doi.org/10.4049/jimmunol.1800823 
  4. Kureel, S. K., Mogha, P., Khadpekar, A., Kumar, V., Joshi, R., Das, S., Bellare, J., & Majumder, A. (2019). Soft substrate maintains proliferative and adipogenic differentiation potential of human mesenchymal stem cells on long-term expansion by delaying senescence. Biology Open8(4), bio039453. https://doi.org/10.1242/bio.039453 
  5. Mastud, P., & Patankar, S. (2019). An ambiguous N-terminus drives the dual targeting of an antioxidant protein Thioredoxin peroxidase (TgTPx1/2) to endosymbiotic organelles in Toxoplasma gondiiPeerJ7, e7215–e7215. https://doi.org/10.7717/peerj.7215 
  6. Mittal, P., Chavan, A., Trakroo, D., Shah, S., & Ghosh, S. K. (2019). Outer kinetochore protein Dam1 promotes centromere clustering in parallel with Slk19 in budding yeastChromosoma128(2), 133–148. https://doi.org/10.1007/s00412-019-00694-9 
  7. Mundhara, N., Majumder, A., & Panda, D. (2019). Methyl-β-cyclodextrin, an actin depolymerizer augments the antiproliferative potential of microtubule-targeting agentsScientific Reports9(1), 7638–7638. https://doi.org/10.1038/s41598-019-43947-4 
  8. Naaz, A., Ahad, S., Rai, A., Surolia, A., & Panda, D. (2019). BubR1 depletion delays apoptosis in the microtubule-depolymerized cells. Biochemical Pharmacology162, 177–190. https://doi.org/10.1016/j.bcp.2018.11.015 
  9. Narayan, A., Mastud, P., Thakur, V., Rathod, P. K., Mohmmed, A., & Patankar, S. (2018). Heterologous expression in Toxoplasma gondii reveals a topogenic signal anchor in a Plasmodium apicoplast proteinFEBS Open Bio8(11), 1746. https://doi.org/10.1002/2211- 5463.12527 
  10. Naveenkumar, P. M., Mann, S., & Sharma, K. P. (2019). Spontaneous Sequestration of Proteins into Liquid Crystalline MicrodropletsAdvanced Materials Interfaces6(3), 1801593. https://doi.org/10.1002/admi.201801593 
  11. Prasad, P., Sanyal, K., & Ghosh, S. K. (2019). Sth1, the Key Subunit of the RSC Chromatin Remodeling Complex, Is Essential in Maintaining Chromosomal Integrity and Mediating High Fidelity Chromosome Segregation in the Human Fungal Pathogen Candida albicansFrontiers in Microbiology10, 1303. https://doi.org/10.3389/fmicb.2019.01303 
  12. Sawant, A. V., Srivastava, S., Prassanawar, S. S., Bhattacharyya, B., & Panda, D. (2019). Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulinBiochemical Pharmacology163, 32–45. https://doi.org/10.1016/j.bcp.2019.01.023 


 

2020-21

 

 

  1. Ray, S., Singh, N., Kumar, R., Patel, K., Pandey, S., Datta, D., et al. (2020) α-Synuclein aggregation nucleates through liquid–liquid phase separationNature Chemistry 12, 705– 716 https://doi.org/10.1038/s41557-020-0465-9
  2. Mehra, S., Ahlawat, S., Kumar, H., Datta, D., Navalkar, A., Singh, N., et al. (2022) α-Synuclein Aggregation Intermediates form Fibril Polymorphs with Distinct Prion-like PropertiesJournal of Molecular Biology 434, 167761 https://doi.org/10.1016/j.jmb.2022.167761
  3. Vashisth, P., Kar, N., Gupta, D. and Bellare, J. R. (2020) Three Dimensional Quercetin- Functionalized Patterned Scaffold: Development, Characterization, and In Vitro Assessment for Neural Tissue EngineeringACS Omega, American Chemical Society 5, 22325–22334 https://doi.org/10.1021/acsomega.0c02678
  4. Badgujar, D. C., Anil, A., Green, A. E., Surve, M. V., Madhavan, S., Beckett, A., et al. (2020) Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestylePLOS Pathogens, Public Library of Science 16, e1009016 https://doi.org/10.1371/journal.ppat.1009016
  5. Surve, M. V., Apte, S., Bhutda, S., Kamath, K. G., Kim, K. S. and Banerjee, A. (2020) Streptococcus pneumoniae utilizes a novel dynamin independent pathway for entry and persistence in brain endotheliumCurrent Research in Microbial Sciences 1, 62–68 https://doi.org/10.1016/j.crmicr.2020.08.001
  6. Das, A., Barai, A., Monteiro, M., Kumar, S. and Sen, S. (2019) Nuclear softening is essential for protease-independent migrationMatrix Biol, Netherlands 82, 4–19 https://doi.org/10.1016/j.matbio.2019.01.001
  7. Das, A., Barai, A., Monteiro, M., Kumar, S. and Sen, S. (2019) Nuclear softening is essential for protease-independent migrationMatrix Biology 82, 4–19 https://doi.org/10.1016/j.matbio.2019.01.001
  8. Abhishek Mukherjee, Amlan Barai, Ramesh K Singh, Wenyi Yan, and Shamik Sen. (2020) Nuclear Plasticity Increases Susceptibility to Damage During Confined MigrationbioRxiv 2020.01.18.911529 https://doi.org/10.1101/2020.01.18.911529
  9. Mishra, M., Dadhich, R., Mogha, P. and Kapoor, S. (2020) Mycobacterium Lipids Modulate Host Cell Membrane Mechanics, Lipid Diffusivity, and Cytoskeleton in a Virulence- Selective MannerACS Infect. Dis., American Chemical Society 6, 2386–2399 https://doi.org/10.1021/acsinfecdis.0c00128
  10. Gupta, D., Singh, A. K., Dravid, A. and Bellare, J. (2019) Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue EngineeringACS Appl. Mater. Interfaces, American Chemical Society 11, 20437–20452 https://doi.org/10.1021/acsami.9b05460
  11. Mishra, M. and Kapoor, S. (2021) Modulation of a host’s cell membrane nano environment by mycobacterial glycolipids: involvement of PI(4,5)P2 signaling lipid? Faraday Discuss., The Royal Society of Chemistry 232, 295–316 https://doi.org/10.1039/D0FD00051E
  12. Mundhara, N., Majumder, A. and Panda, D. (2019) Methyl-β-cyclodextrin, an actin depolymerizer augments the antiproliferative potential of microtubule-targeting agentsScientific Reports 9, 7638 https://doi.org/10.1038/s41598-019-43947-4
  13. Priyanka Mittal, Hemant Kumar Prajapati, Komal Ghule, and Santanu K. Ghosh. (2019) Meiosis-specific functions of kinesin motors in cohesin removal and maintenance of chromosome integrity in budding yeast. bioRxiv 692145 https://doi.org/10.1101/692145
  14. James, H. P. and Jadhav, S. (2020) Mechanical and transport properties of chitosan- zwitterionic phospholipid vesiclesColloids Surf B Biointerfaces, Netherlands 188, 110782 https://doi.org/10.1016/j.colsurfb.2020.110782
  15. Rashid, A., Naaz, A., Rai, A., Chatterji, B. P. and Panda, D. (2020) Inhibition of polo-like kinase 1 suppresses microtubule dynamics in MCF-7 cellsMolecular and Cellular Biochemistry 465, 27–36 https://doi.org/10.1007/s11010-019-03664-y
  16. Ambuja Navalkar, Satyaprakash Pandey, Namrata Singh, Amit Kumar Dey, Sandhini Saha, Komal Patel, et al. (2020) Induction of intracellular wild-type p53 amyloids leading to cellular transformation and tumor formation in micebioRxiv 2020.06.04.133124 https://doi.org/10.1101/2020.06.04.133124
  17. Mundhara, N., Majumder, A. and Panda, D. (2021) Hyperthermia induced disruption of mechanical balance leads to G1 arrest and senescence in cellsBiochemical Journal 478, 179–196 https://doi.org/10.1042/BCJ20200705
  18. Adhyapak, P., Srivatsav, A. T., Mishra, M., Singh, A., Narayan, R. and Kapoor, S. (2020) Dynamical Organization of Compositionally Distinct Inner and Outer Membrane Lipids of MycobacteriaBiophysical Journal 118, 1279–1291 https://doi.org/10.1016/j.bpj.2020.01.027
  19. Mishra, M., Adhyapak, P., Dadhich, R. and Kapoor, S. (2019) Dynamic Remodeling of the Host Cell Membrane by Virulent Mycobacterial Sulfoglycolipid-1. Scientific Reports https://doi.org/10.1038/s41598-019-49343-2
  20. Sawant, A. V., Srivastava, S., Prassanawar, S. S., Bhattacharyya, B. and Panda, D. (2019) Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tublinBiochemical Pharmacology 163, 32–45 https://doi.org/10.1016/j.bcp.2019.01.023
  21. Dutta, S., Kumar, S., Singh, H., Khan, M., Barai, A., Tewari, A., et al. (2020) Chemical evidence of preserved collagen in 54millionyearold fish vertebraePalaeontology 63https://doi.org/10.1111/pala.12469
  22. Laxman, K., Reddy, B. P. K., Robinson, A., Srivastava, R. and Ravikanth, M. (2020) Cell- Penetrating Peptide-Conjugated BF2-Oxasmaragdyrins as NIRF Imaging and Photothermal AgentsChemMedChem, John Wiley & Sons, Ltd 15, 1783–1787https://doi.org/10.1002/cmdc.202000401
  23. Kumari, A., Srivastava, S., Manne, R. K., Sisodiya, S., Santra, M. K., Guchhait, S. K., et al. (2019) C12, a combretastatin-A4 analog, exerts anticancer activity by targeting microtubulesBiochemical Pharmacology 170,113663 https://doi.org/10.1016/j.bcp.2019.113663
  24. Laxman, K., Reddy, B. P. K., Mishra, S. K., Robinson, A., De, A., Srivastava, R., et al. (2020) Bioinspired carrier-free peptide conjugated BF2-oxasmaragdyrin dye-based nano self- assemblies: a photostable NIR cancer theragnostic agentNPG Asia Materials 12, 75 https://doi.org/10.1038/s41427-020-00256-x
  25. Laxman, K., Reddy, B. P. K., Mishra, S. K., Gopal, M. B., Robinson, A., De, A., et al. (2020) BF2-Oxasmaragdyrin Nanoparticles: A Non-toxic, Photostable, Enhanced Non-radiative Decay-Assisted Efficient Photothermal Cancer Theragnostic AgentACS Appl. Mater. Interfaces, American    Chemical Society 12, 52329–52342https://doi.org/10.1021/acsami.0c13326
  26. Mastud, P. and Patankar, S. (2019) An ambiguous N-terminus drives the dual targeting of an antioxidant protein Thioredoxin peroxidase (TgTPx1/2) to endosymbiotic organelles in Toxoplasma gondii. PeerJ, United States 7, e7215 https://doi.org/10.7717/peerj.7215
  27. Pragati Mastud and Swati Patankar. (2019) An ambiguous N-terminus drives the dual targeting of an antioxidant protein Thioredoxin peroxidase (TgTPx1/2) to endosymbiotic organelles in <em>Toxoplasma gondii<em>bioRxiv 562587 https://doi.org/10.1101/562587
  28. Namrata Singh, Komal Patel, Ambuja Navalkar, Pradeep Kadu, Debalina Datta, Debdeep Chatterjee, et al. (2020) Amyloid fibril-based hydrogels for high-throughput tumor spheroid modelingbioRxiv 2020.12.28.424634 https://doi.org/10.1101/2020.12.28.424634
  29. Dadhich, R., Mishra, M., Ning, S., Jana, S., Sarpe, V. A., Mahato, J., et al. (2020) A Virulence - Associated Glycolipid with Distinct Conformational Attributes: Impact on Lateral Organization of Host Plasma Membrane, Autophagy, and SignalingACS Chem. Biol., American Chemical Society 15, 740–750 https://doi.org/10.1021/acschembio.9b00991


 

2021-22

 

  1. Barai, A., Mukherjee, A., Das, A., Saxena, N. and Sen, S. (2021) α Actinin-4 drives invasiveness by regulating myosin IIB expression and myosin IIA localizationJournal of Cell Science 134, jcs258581 https://doi.org/10.1242/jcs.258581
  2. Shirke, P. U., Goswami, H., Kumar, V., Shah, D., Beri, S., Das, S., et al. (2021) “Viscotaxis”- directed migration of mesenchymal stem cells in response to loss modulus gradientActa Biomaterialia 135, 356–367 https://doi.org/10.1016/j.actbio.2021.08.039
  3. Dwivedi, N., Das, S., Bellare, J. and Majumder, A. (2021) Viscoelastic substrate decouples cellular traction force from other related phenotypesBiochemical and Biophysical Research Communications 543, 38–44 https://doi.org/10.1016/j.bbrc.2021.01.027
  4. Kumar, D., Prajapati, H. K., Mahilkar, A., Ma, C.-H., Mittal, P., Jayaram, M., et al. (2021) The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioningPLOS Genetics, Public Library of Science 17, e1009660 https://doi.org/10.1371/journal.pgen.1009660
  5. Mundhara, N., Yadav, S., Shirke, P. U., Panda, D. and Majumder, A. (2021) Substrate loss modulus promotes the differentiation of SHSY-5Y neuroblastoma cellsMaterialia 15, 100968 https://doi.org/10.1016/j.mtla.2020.100968
  6. Sane, A., Sridhar, S., Sanyal, K. and Ghosh, S. (2021) Shugoshin ensures maintenance of the spindle assembly checkpoint response and efficient spindle disassemblyMolecular Microbiology 116 https://doi.org/10.1111/mmi.14796
  7. Singh, D., Singh, P., Pradhan, A., Srivastava, R. and Sahoo, S. K. (2021) Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast CancerACS Appl. Bio Mater., American Chemical Society 4, 3670–3685 https://doi.org/10.1021/acsabm.1c00141 
  8. Anil Anjali, Apte Shruti, Joseph Jincy, Parthasarathy Akhila, Madhavan Shilpa, and Banerjee Anirban. (2021) Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain EndotheliumJournal of Bacteriology, American Society for Microbiology 203, 10.1128/jb.00439-21 https://doi.org/10.1128/jb.00439-21 
  9. Mhatre, O., Reddy, B. P. K., Patnaik, C., Chakrabarty, S., Ingle, A., De, A., et al. (2021) pH- responsive delivery of anti-metastatic niclosamide using mussel inspired polydopamine nanoparticlesInternational Journal of Pharmaceutics 597, 120278 https://doi.org/10.1016/j.ijpharm.2021.120278 
  10. Malankar, G. S., Sakunthala, A., Navalkar, A., Maji, S. K., Raju, S. and Manjare, S. T. (2021) Organoselenium-based BOPHY as a sensor for detection of hypochlorous acid in mammalian cellsAnalytica Chimica Acta            1150, 338205https://doi.org/10.1016/j.aca.2021.338205 
  11. Gupta, D., Vashisth, P. and Bellare, J. (2021) Multiscale porosity in a 3D printed gellan– gelatin composite for bone tissue engineeringBiomedical Materials, IOP Publishing 16, 034103 https://doi.org/10.1088/1748-605X/abf1a7 
  12. Garlapati, C., Joshi, S., Turaga, R. C., Mishra, M., Reid, M. D., Kapoor, S., et al. (2021) Monoethanolamine-induced glucose deprivation promotes apoptosis through metabolic rewiring in prostate cancer. Theranostics, Ivyspring International Publisher 11, 9089–9106 https://doi.org/10.7150/thno.62724 
  13. Singh, B., Bahadur, R., Rangara, M., Gandhi, M. N. and Srivastava, R. (2021) Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS Appl. Bio Mater., American Chemical Society 4, 4641–4651 https://doi.org/10.1021/acsabm.1c00379 
  14. Das, S., Surve, V., Marathe, S., Wad, S., Karulkar, A., Srinivasan, S., et al. (2021) IL-9 Abrogates the Metastatic Potential of Breast Cancer by Controlling Extracellular Matrix Remodeling and Cellular ContractilityThe Journal of Immunology 206, 2740–2752 https://doi.org/10.4049/jimmunol.2000383 
  15. Singh, B., Bahadur, R., Neekhra, S., Gandhi, M. and Srivastava, R. (2021) Hydrothermal- Assisted Synthesis and Stability of Multifunctional MXene Nanobipyramids: Structural, Chemical, and Optical EvolutionACS Appl. Mater. Interfaces, American Chemical Society 13, 3011–3023 https://doi.org/10.1021/acsami.0c18712 
  16. Jahan, I., Pandya, J., Munshi, R. and Sen, S. (2021) Glycocalyx disruption enhances motility, proliferation and collagen synthesis in diabetic fibroblastsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868, 118955 https://doi.org/10.1016/j.bbamcr.2021.118955 
  17. Kar, N., Gupta, D. and Bellare, J. (2021) Ethanol affects fibroblast behavior differentially at low and high doses: A comprehensive, dose-response evaluationToxicology Reports 8, 1054–1066 https://doi.org/10.1016/j.toxrep.2021.05.007
  18. Patwardhan, S., Mahadik, P., Shetty, O. and Sen, S. (2021) ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1Biomaterials 279, 121185 https://doi.org/10.1016/j.biomaterials.2021.121185
  19. Navalkar, A., Pandey, S., Singh, N., Patel, K., Datta, D., Mohanty, B., et al. (2021) Direct evidence of cellular transformation by prion-like p53 amyloid infectionJournal of Cell Science 134, jcs258316 https://doi.org/10.1242/jcs.258316
  20. Jejurkar, V. P., Yashwantrao, G., Kumar, P., Neekhra, S., Maliekal, P. J., Badani, P., et al. (2021) Design and Development of Axially Chiral Bis(naphthofuran) Luminogens as Fluorescent Probes for Cell Imaging. Chemistry – A European Journal, John Wiley & Sons, Ltd 27, 5470–5482 https://doi.org/10.1002/chem.202004942
  21. Shenoi, P. R., Kokane, V. B., Thawale, H. V., Kubde, R. R., Gunwal, M. K. and Shahu, S. P. (2021) Comparing marginal microleakage in Class V cavities restored with flowable composite and Cention-N using confocal microscope-an in-vitro studyIndian J Dent Res, India 32, 348–353 https://doi.org/10.4103/ijdr.IJDR_90_20
  22. Asadullah, Kumar, S., Saxena, N., Sarkar, M., Barai, A. and Sen, S. (2021) Combined heterogeneity in cell size and deformability promotes cancer invasivenessJournal of Cell Science 134, jcs250225 https://doi.org/10.1242/jcs.250225 
  23. Saha, R., Patkar, S., Maniar, D., Pillai, M. M. and Tayalia, P. (2021) A bilayered skin substitute developed using an eggshell membrane crosslinked gelatin–chitosan cryogelBiomater. Sci., The Royal Society of Chemistry 9, 7921–7933 https://doi.org/10.1039/D1BM01194D 


 

2022-23

 

  1. Mehra, S., Ahlawat, S., Kumar, H., Datta, D., Navalkar, A., Singh, N., et al. (2022) α-Synuclein Aggregation Intermediates form Fibril Polymorphs with Distinct Prion-like PropertiesJournal of Molecular Biology 434, 167761 https://doi.org/10.1016/j.jmb.2022.167761 
  2. Pushpakaran, A., Battaje, R. R. and Panda, D. (2022) Vitamin K3 inhibits FtsZ assembly, disrupts the Z-ring in Streptococcus pneumoniae and displays anti-pneumococcal activityBiochemical Journal 479, 1543–1558 https://doi.org/10.1042/BCJ20220077 
  3. Sharma, K., Jain, M., Seth, J. and Kalgar, L. (2020) Unprecedented Self-Assembly in Dilute Aqueous Solution of Polyethyleneimine: Formation of Fibrillar NetworkMacromolecules 53 https://doi.org/10.1021/acs.macromol.0c01501 
  4. Kureel, S. K., Sinha, S., Purkayastha, P., Barretto, S. and Majumder, A. (2022) Substrate Stiffness Controls the Cell Cycle of Human Mesenchymal Stem Cells Via Cellular TractionJOM 74, 3419–3427 https://doi.org/10.1007/s11837-022-05392-z 
  5. Biswas, A., Singh, S. B., Todankar, C. S., Sudhakar, S., Pany, S. P. P. and Pradeepkumar, P. (2022) Stabilization and fluorescence light-up of G-quadruplex nucleic acids using indolyl-quinolinium based probesPhys. Chem. Chem. Phys., The Royal Society of Chemistry 24, 6238–6255 https://doi.org/10.1039/D1CP04718C 
  6. Cotta Karishma Berta, Ghosh Saptarshi, and Mehra Sarika. (2022) Potentiating the Anti- Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing DrugsMicrobiology Spectrum, American Society for Microbiology 10, e01262-21 https://doi.org/10.1128/spectrum.01262-21 
  7. Navalkar, A., Paul, A., Sakunthala, A., Pandey, S., Dey, A. K., Saha, S., et al. (2022) Oncogenic gain of function due to p53 amyloids occurs through aberrant alteration of cell cycle and proliferationJournal of Cell Science 135, jcs259500 https://doi.org/10.1242/jcs.259500
  8. Menon, A. P., Dong, W., Lee, T.-H., Aguilar, M.-I., Duan, M. and Kapoor, S. (2022) Mutually Exclusive Interactions of Rifabutin with Spatially Distinct Mycobacterial Cell Envelope Membrane Layers Offer Insights into Membrane-Centric Therapy of Infectious DiseasesACS Bio Med Chem Au, American Chemical Society 2, 395–408 https://doi.org/10.1021/acsbiomedchemau.2c00010
  9. Sthanam, L. K., Roy, T., Patwardhan, S., Shukla, A., Sharma, S., Shinde, P. V., et al. (2022) MMP modulated differentiation of mouse embryonic stem cells on engineered cell derived matrices.    Biomaterials 280,121268 https://doi.org/10.1016/j.biomaterials.2021.121268
  10. Manisha Poudyal, Komal Patel, Ajay Singh Sawner, Laxmikant Gadhe, Pradeep Kadu, Debalina Datta, et al. (2022) Liquid condensate is a common state of proteins and polypeptides at the regime of high intermolecular interactionsbioRxiv 2021.12.31.474648 https://doi.org/10.1101/2021.12.31.474648
  11. Adhyapak, P., Dong, W., Dasgupta, S., Dutta, A., Duan, M. and Kapoor, S. (2022) Lipid Clustering in Mycobacterial Cell Envelope Layers Governs Spatially Resolved Solvation DynamicsChemistry – An Asian Journal, John Wiley & Sons, Ltd 17, e202200146 https://doi.org/10.1002/asia.202200146
  12. Sharma, S. and Sharma, K. P. (2022) Light-responsive self-assembled microstructures of branched polyethyleneimine at low pHChem. Commun., The Royal Society of Chemistry 58, 13779–13782 https://doi.org/10.1039/D2CC04996A
  13. Rohit Joshi, Pooja Dharmambal Murlidharan, Pushpendra Yadav, Vedanshi Dharnidharka, and Abhijit Majumder. (2022) Histone deacetylase inhibitor overrides the effect of soft hydrogel on the mechanoresponse of human mesenchymal stem cellsbioRxiv 2022.01.04.474891 https://doi.org/10.1101/2022.01.04.474891
  14. Lin, H.-Y. J., Battaje, R. R., Tan, J., Doddareddy, M., Dhaked, H. P., Srivastava, S., et al. (2022) Discovery of 2′,6-Bis(4-hydroxybenzyl)-2-acetylcyclohexanone, a Novel FtsZ InhibitorMolecules 27https://doi.org/10.3390/molecules27206993
  15. Sakunthala, A., Datta, D., Navalkar, A., Gadhe, L., Kadu, P., Patel, K., et al. (2022) Direct Demonstration of Seed Size-Dependent α-Synuclein Amyloid Amplification. J. Phys. Chem.    Lett., American Chemical  Society 13, 6427–6438 https://doi.org/10.1021/acs.jpclett.2c01650
  16. Bhutda Smita, Ghosh Sourav, Sinha Akash Raj, Santra Shweta, Hiray Aishwarya, and Banerjee Anirban. (2022) Differential Ubiquitination as an Effective Strategy Employed by the Blood-Brain Barrier for Prevention of Bacterial Transcytosis. Journal of Bacteriology, American Society for Microbiology 204, e00456-21 https://doi.org/10.1128/JB.00456-21
  17. Bachal, K., Yadav, S., Gandhi, P. and Majumder, A. (2023) Design and validation of a flowless gradient generating microfluidic device for high-throughput drug testing. Lab Chip, The Royal Society of Chemistry 23, 261–271 https://doi.org/10.1039/D2LC00879C
  18. Chatterjee, D., Jacob, R. S., Ray, S., Navalkar, A., Singh, N., Sengupta, S., et al. (2022) Co- aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife (Rubin, M. R., Zaidi, M., and Otzen, D. E., eds.), eLife Sciences Publications, Ltd 11, e73835 https://doi.org/10.7554/eLife.73835
  19. Saha, R. and Tayalia, P. (2022) Clove Oil-Incorporated Antibacterial Gelatin–Chitosan Cryogels for Tissue Engineering: An In Vitro StudyACS Biomater. Sci. Eng., American Chemical Society 8, 3557–3567 https://doi.org/10.1021/acsbiomaterials.2c00546
  20. Mishra, M. and Kapoor, S. (2022) Chapter 5 - Multifaceted roles of mycobacterium cell envelope glycolipids during host cell membrane interactions. In Biology of Mycobacterial Lipids (Fatima, Z., and Canaan, S., eds.), pp 105–131, Academic Press https://doi.org/10.1016/B978-0-323-91948-7.00004-X
  21. Yadav, S. and Majumder, A. (2022) Biomimicked large-area anisotropic grooves from Dracaena sanderiana leaf enhances cellular alignment and subsequent differentiationBioinspiration & Biomimetics, IOP Publishing 17, 056002 https://doi.org/10.1088/1748- 3190/ac7afe
  22. Yadav, P., Chaturvedi, S., Biswas, S. K., Srivastava, R., Kailasam, K., Mishra, A. K., et al. (2022) Biodegradable Protein-Stabilized Inorganic Nanoassemblies for Photothermal Radiotherapy of Hepatoma Cells. ACS Omega, American Chemical Society 7, 8928–8937 https://doi.org/10.1021/acsomega.1c07324
  23. Deshmukh, P. P., Malankar, G. S., Sakunthala, A., Navalkar, A., Maji, S. K., Murale, D. P., et al. (2022) An efficient chemodosimeter for the detection of Hg(ii) via diselenide oxidationDalton Trans., The Royal Society of Chemistry 51, 2269–2277 https://doi.org/10.1039/D1DT04038C


 

2023-24

 

  1. Jashrapuria, K. and Singh, S. P. (2023) Zwitterionic polymer brush functionalized graphene oxide blended polyethersulfone membrane with enhanced performance and anti- biofouling propertiesJournal of Membrane Science 687, 122032 https://doi.org/10.1016/j.memsci.2023.122032
  2. Sengupta, S., Singh, N., Paul, A., Datta, D., Chatterjee, D., Mukherjee, S., et al. (2023) p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type formJournal of Cell Science 136, jcs261017 https://doi.org/10.1242/jcs.261017
  3. Poudyal, M., Patel, K., Gadhe, L., Sawner, A. S., Kadu, P., Datta, D., et al. (2023) Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieuNature Communications 14, 6199 https://doi.org/10.1038/s41467-023-41864-9
  4. Jahan, K., Battaje, R. R., Pratap, V., Ahire, G., Pushpakaran, A., Ashtam, A., et al. (2024) Identification of ethyl-6-bromo-2((phenylthio)methyl)imidazo[1,2-a]pyridine-3- carboxylate as a narrow spectrum inhibitor of Streptococcus pneumoniae and its FtsZEuropean Journal of Medicinal Chemistry 267, 116196 https://doi.org/10.1016/j.ejmech.2024.116196
  5. Ray, S., Singh, N., Patel, K., Krishnamoorthy, G. and Maji, S. K. (2023) FRAP and FRET Investigation of α-Synuclein Fibrillization via Liquid-Liquid Phase Separation In Vitro and in HeLa Cells. In Protein Aggregation: Methods and Protocols (Cieplak, A. S., ed.), pp 395–423, Springer US, New York, NY https://doi.org/10.1007/978-1-0716-2597-2_26
  6. Misra, U., Jashrapuria, K. and Singh, S. P. (2024) Fabrication of polyether sulfone-laser induced graphene composite electroconductive membrane and its application in biofouling control and chromium removalJournal of Membrane Science 694, 122394 https://doi.org/10.1016/j.memsci.2023.122394
  7. Santra, S., Nayak, I., Paladhi, A., Das, D. and Banerjee, A. (2024) Estimates of differential toxin expression governing heterogeneous intracellular lifespans of Streptococcus pneumoniaeJournal of Cell Science 137, jcs260891 https://doi.org/10.1242/jcs.260891
  8. Srivastava, A. K., Desai, U. and Singh, A. (2023) Effect of graphene coating on modified and pristine carbon fibers on the tribological response of carbon fiber epoxy compositesComposites Part B: Engineering 250, 110412 https://doi.org/10.1016/j.compositesb.2022.110412
  9. Venkatramani, A., Ashtam, A. and Panda, D. (2024) EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in TauopathiesACS Chem. Neurosci., American       Chemical Society 15,1219–1233 https://doi.org/10.1021/acschemneuro.3c00815
  10. Piplani, N., Roy, T., Saxena, N. and Sen, S. (2024) Bulky glycocalyx shields cancer cells from invasion-associated stressesTranslational Oncology 39, 101822 https://doi.org/10.1016/j.tranon.2023.101822
  11. Srivatsav, A. T. and Kapoor, S. (2023) Biophysical Interaction Landscape of Mycobacterial Mycolic Acids and Phenolic Glycolipids with Host Macrophage MembranesACS Appl. Bio Mater., American Chemical Society 6, 5555–5562 https://doi.org/10.1021/acsabm.3c00748
  12. Apte, S., Bhutda, S., Ghosh, S., Sharma, K., Barton, T. E., Dibyachintan, S., et al. An innate pathogen sensing strategy involving ubiquitination of bacterial surface proteins. Science AdvancesAmerican Association for the Advancement of Science 9, eade1851https://doi.org/10.1126/sciadv.ade1851
  13. Bhondwe, P., Sengar, N., Bodiwala, H. S., Singh, I. P. and Panda, D. (2024) An adamantyl- caffeoyl-anilide exhibits broad-spectrum antibacterial activity by inhibiting FtsZ assembly and Z-ring formationInternational Journal of Biological Macromolecules 259, 129255 https://doi.org/10.1016/j.ijbiomac.2024.129255
  14. Singh, N., Patel, K., Navalkar, A., Kadu, P., Datta, D., Chatterjee, D., et al. (2023) Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro. Biomaterials 295, 122032 https://doi.org/10.1016/j.biomaterials.2023.122032
  15. Rani, S., Das, R. K., Jaiswal, A., Singh, G. P., Palwe, A., Saxena, S., et al. (2023) 4D nanoprinted sensor for facile organo-arsenic detection: A two-photon lithography-based approachChemical  Engineering Journal 454, 140130 https://doi.org/10.1016/j.cej.2022.140130
  16. Piplani, N., Roy, T., Saxena, N. and Sen, S. (2024) Bulky glycocalyx shields cancer cells from invasion-associated stressesTranslational Oncology 39, 101822 https://doi.org/10.1016/j.tranon.2023.101822