Bio-atomic force microscope Facility
Make
Oxford Instruments Asylum Research Inc, USA.
Model
MFP-3D BIO
Facility Status
Working
Date of Installation
Facility Management Division
Institute Central Research Facilities (ICRF)

.

Category

  • Microscopy and Imaging » Force Microscopy
  • Material Characterization » Electrical Characterisation

Booking Details

Booking available for
Internal and External Both
Available Equipment/ Mode of use
The Bio-AFM can be operated routinely in the following modes:
1. Contact Mode (Under Dry and Wet Condition).
2. Tapping Mode (Under Dry and Wet Condition).
Other advanced modes of operation are as follows:
3. Force Mode
4. Force Map
5. Piezo-response Force Microscopy
6. Lateral Force Microscopy
7. Conductive AFM
8. Scanning Kelvin Microscopy
9. Electrostatic Force Microscopy
10. AM-FM Viscoelastic Mapping
11. Loss Tangent imaging
12. Poly Heater
13. Bio-Heater
Note:
1. In Force Mode “Dwell” can be used.
2. In PFM High voltage can be used up to 230V.
3. Heater can be used up to 200° C.
4. Coolers can be used from -20° to 120° C.

Facility Management Team and Location

Faculty In Charge
Prof. Shamik Sen
shamiks@iitb.ac.in
022-2576-7743
Facility Operator
Vijay Krushna Mistari
mistarivijay@iitb.ac.in
022-2159-6746
Facility Management Members
1. Prof. Shamik Sen (BSBE)
2. Prof. Kiran Kondabagil (BSBE)
3. Prof. Mithun Chowdhury(MEMS)
4. Prof. Arindam Chowdhury (Chemistry)
Department
Biosciences and Bioengineering
Lab Email ID
bioafm@iitb.ac.in bioafm001@gmail.com
Facility Location
Room No.-05, Central Instrumentation Room, Ground Floor, Bio-Sciences & Bio-Engineering Department, I.I.T. Bombay, Powai, Mumbai - 400076
Lab Phone No
022-2159-6746

Facility Features, Working Principle and Specifications

Facility Description

Facility Description

The Bio-AFM facility was installed in January 2014, in the department of “Bio-Science & Bio-Engineering” Central Facility as per RIFC norms. The Facility is open for all IIT Bombay internal users, other institute, National Laboratory and Industry. 

Features Working Principle

The principle of operation of the AFM is very simple - A sharp cantilever tip interacts with the sample surface sensing the local forces between the molecules of the tip and sample surface. This instrument is not a “conventional microscope” that collects and focuses light. The word microscope has been associated with this instrument because it is able to measure microscopic features of the sample. The most characteristic property of the AFM is that the images are acquired by “feeling” the sample surface without using light. In this way, not only the sample topography can be recorded with good resolution, but also the material characteristics and the strength of interaction between the sample surface and the cantilever tip. Due to the fact that no light is involved in acquiring the sample properties, the AFM reaches a resolution far below the diffraction limit offered by the optical microscopy. Its resolution is limited only by the tip radius and the spring constant of the cantilever.

 

Body Specification

SYSTEM SPECIFICATION: 

Closed loop sensors on all three axes: 

X & Y range 120 μm, X & Y sensors <0.5 nm noise, <0.5% non-linearity 

Z range > 40 μm 

DC height noise <50 pm. 

Lowest Noise Single Molecule or Cellular Force Measurements: 

Cantilever deflection noise <15 pm (typical 8 pm) 

Low coherence source Super luminescent diode (SLD) for ripple-free baseline. 

Cantilever spring constant calibration by the thermal noise and Sader methods or GetReal automated cantilever calibration.

Flexible interface allows recording or triggering from any channel during a force curve, including amplitude/phase from AC or Dual AC™ mode; user-supplied input voltages; and photon count rate (with optional Digital Access Module).

Force mapping including automated adhesion and elastic modulus analysis.

 

SPECIAL FEATURES:

High-Resolution imaging in liquid for soft biological samples. 

No pre-processing of materials/cells is required for imaging. 

Ability to combine AFM measurements with images obtained in inverted microscope. 

Real-time Optical Navigation Top or bottom-view optical images can be used to navigate the tip to any feature on the sample and then scan that area at the nanoscale with the AFM or select specific locations for force curves – easily and seamlessly. 

Powerful Real-time and Offline Rendering Options Both AFM and optical images can be rendered and viewed together in both real-time and offline. Optical images can be overlaid on AFM data to assist interpretation. Stunning 3D renderings combine AFM topography with the capabilities of light microscopy. 

All of the following optical techniques are supported: 

1. Bright field 

2. Phase Contrast 

3. Fluorescence  

Large Z range (40 μm extended Z option) accommodates demanding applications such as cell-cell and cell-substrate adhesion measurements. 

Users can choose between open loop force curves with sensored Z for the ultimate in low noise performance or closed loop Z for the most accurate velocity control. 

Force Mapping measures force-distance curves at a grid of points with automated fitting of indentation models for estimation of elastic modulus and automated adhesion /rupture force analysis. 

Analysis software helps by suggesting the most appropriate indentation model among many built-in options, including “Hertz / Sneddon, Johnson-Kendall-Roberts (JKR), DerjaguinMüller-Toporov (DMT), and Oliver-Pharr”.

Instructions for Registration, Sample Preparation, User Instructions and Precautionary Measures

Instructions for Registration

For Internal:

Only online registration through the Drona IRCC web page will be accepted. If the appointment is given but the user cannot come, a mail should be immediately sent to bioafm@iitb.ac.in / bioafm001@gmail.com to cancel his/her slot.

USB drives are not allowed to copy data to minimize virus-related issues. Instead, data must be copied into a new blank CD or sent online

For External:

Need to send mail on 

bioafm@iitb.ac.inbioafm001@gmail.com 

Instruction for Sample Preparation
  • All type of samples can be done. 
  • Expect Suspended and semi liquid sample are not allowed 
User Instructions and Precautionary Measures
  1. We will accept online registration only through the IRCC webpage. If you need to cancel your slot, please email us immediately with an explanation.

  2. Slots will be provided on a first-come-first-served basis.

  3. USB drives are strictly prohibited for copying data to minimize virus-related issues. You are requested to bring a new blank CD to transfer your data. All data must be transferred within 7 days of imaging. Without exception.

  4. Users must be present during the entire slot.

Charges for Analytical Services in Different Categories

Applications

 

  • Biological sciences. 

  • Life science 

  • Physical sciences 

  • Material science 

  • Polymer science 

  • Electrical characterization 

  • Nanolithography 

  • Nanotechnology 

  • Nano-mechanics. 

Sample Details

Chemical allowed

Cell Media is allowed

Allowed Substrate

All type of substrate are allowed 

Gases allowed

No need of gases

Substrate Dimension
  • Maximum 2” X 2” in x-y and Height 14 mm
Target dimension
  • NA
Contamination remarks
  • NA
Precursors/ Targets allowed
  • NA

SOP, Lab Policies and Other Details

Publications

2013 :
  1. Ghosh, D., Mondal, M., Mohite, G. M., Singh, P. K., Ranjan, P., Anoop, A., Ghosh, S., Jha, N.N., Kumar, A. & Maji, S. K. (2013). "The Parkinson's disease-associated H50Q mutation accelerates α-Synuclein aggregation in vitro." Biochemistry, 52(40), 6925- 6927                                    

    http://pubs.acs.org/doi/abs/10.1021/bi400999d 

 

2014 :
  1. D Ghosh, S Sahay, P Ranjan, S Salot, GM Mohite, PK Singh, S Dwivedi, E Carvalho, R Banerjee, A Kumar and S.K. Maji (2014) "The newly Discovered Parkinson's Disease Associated Finnish Mutation (A53E) Attenuates α-Synuclein  Aggregation  and Membrane Binding," Biochemistry, 53(41):6419-21 

    http://pubs.acs.org/doi/10.1021/bi5010365 

 

2015 :
  1. D Ghosh, PK Singh, S Sahay, NN Jha, RS Jacob, S Sen, A Kumar, R Riek and SK Maji (2015) "Structure based aggregation  studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation", Scientific Rep, 5:9228. 

    https://www.nature.com/articles/srep09228 

  2. Reeba S. J.*, George E*, Singh P. K., Salot S., Anoop A., Jha N. N., Sen S.# and Maji S. K.#, "Cell adhesion on amyloid fibrils lacking integrin recognition motif", J Biol Chem. 2016 Mar 4;291(10):5278-98.

    http://www.jbc.org/content/291/10/5278

  3. Ranjan P, Kumar A. "The Involvement of His50 during Protein DisulfideIsomerase Binding Is Essential for Inhibiting α-Synd Fibril Formation.Biochemistry". 2016 May17; 55(19):2677-80

    http://pubs.acs.org/doi/abs/10.1021/acs.biochem.6b00280 

 

2017 :
  1. L. K. Sthanam, A. Barai A. Rastogi, V. K. Mistari, A. Maria, R. Kauthale, M. Gatne, S. Sen, "Biophysical regulation of mouse  embryonic stem cell fate and genomic integrity by feeder derived matrices", Biomaterials, Volume 119, March 2017, Pages 9-22 

    http://www.sciencedirect.com/science/article/pii/S0142961216306950?via

  2. J. Rane, P. Bhaumik, D. Panda, "Curcumin inhibits tau aggregation and disintegrates tau filaments in vitro" Journal of Alzheimer's disease, 2017. 

    https://www.ncbi.nlm.nih.gov/pubmed/28984591 

  3. A. Yadav and M.S. Tirumkudulu, "Free-standing monolayer films of ordered colloidal particles", Soft Matter, 13, 4520-4525 (2017). 

    http://pubs.rsc.org/en/content/articlelanding/2017/sm/c7sm00407a#!divA 

  4. Ranjan, P., Ghosh, D., Yarramala, D. S., Das, S., Maji, S. K., & Kumar, A. (2017). "Differential copper binding to alpha-synuclein and its disease-associated mutants affect the aggregation and amyloid formation." Biochimica et Biophysica Acta (BBA)- General Subjects, 1861(2), 365-374.  

    http://www.sciencedirect.com/science/article/pii/S0304416516304822  

  5. Srinivasan S.*, Ashok V.*, Mohanty S., Das A., Das S., Kumar S., Sen S.#, Purwar R.#, "Blockade of Rho-associated protein kinase (ROCK) inhibits the contractility and invasion potential of cancer stem like cells", Oncotarget, 2017.

    https://www.ncbi.nlm.nih.gov/pubmed/28199964 

  6. Dey S. K., Singh R. K., Chattoraj S., Saha S., Das A., Bhattacharyya K., Sengupta K., Sen S.,  Jana S. S., "Differential role of  nonmuscle  myosin II isoforms during blebbing of MCF-7 cells.", Mol. Biol. Cell., 2017.     

    https://www.ncbi.nlm.nih.gov/pubmed/28251924 

 

2018:
  1. Surendra Kumar Verma, Akshay Modi, Ashwain Dravid, Jayesh Bellare (2018). “Lactobionic acid-functionalized  polyethersulfone  hollow fiber membranes promote HepG2 attachment and functions.” RSC Advances, 8 (51) 29078-29088 

    https://pubmed.ncbi.nlm.nih.gov/35539695/ 

  2. Dubey R, Minj P, Malik N, Sardesai DM, Kulkarni SH, Acharya JD, Bhavesh NS, Sharma S, Kumar A (2017) “Recombinant  human islet amyloid polypeptide forms shorter fibrils and mediates β-cell apoptosis via generation of oxidative stress.” Biochem J. 16:3915-3934                                                      

    https://doi.org/10.1042/BCJ20170323 

  3. R Kumar, S Das, GM Mohite, SK Rout, S Halder, NN Jha, S Ray, S Mehra, V Agarwal and SK Maji (2018), “Cytotoxic  oligomers  and fibrils trapped in a gel-like state of α-synuclein assemblies.” Angewandte Chemie International Edition  

    https://doi.org/10.1002/anie.201711854 

  4. Bhattacharya D, Sinha K, Panda D. “Mutation of G51 in SepF impairs FtsZ assembly promoting  ability  of SepF  and  retards the division of Mycobacterium smegmatis cells.” Biochem J. 2018 Aug 14;475(15):2473-2489.                                           

    https://doi.org/10.1042/BCJ20180281 

  5. S. Mehra, D Ghosh, R Kumar, M Mondal, LG Gadhe, S Das, A Anoop, NN Jha, RS Jacob, D Chatterjee, S Ray, N Singh, A Kumar, and SK Maji (2018), “Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils.” Journal of Biological Chemistry.  

    https://doi.org/10.1074/jbc.RA118.004267 

  6. GM Mohite, A Navalkar, R Kumar, S Mehra, S Das, LG Gadhe, D Ghosh, B Alias, V Chandrawanshi,  A Ramakrishnan,  S Mehra  and SK Maji (2018), “Familial α-synuclein A53E mutation enhances cell death in response to environmental toxins due to more population of oligomers.” Biochemistry  

    https://pubs.acs.org/doi/10.1021/acs.biochem.8b00321 

  7. S Das, MK Kumawat, S Ranganathan, R Kumar, J Adamcik, P Kadu, R Paadinhaateri, R Srivastava, R Mezzenga and SK Maji (2018), “Cell alignment on graphene-amyloid composites.” Advanced Materials Interfaces.

    https://doi.org/10.1002/admi.201800621 

  8. VENUGOPAL B, MOGHA P, DHAWAN J, & MAJUMDER A. (2018). “Cell density  overrides the  effect of substrate  stiffness  on human mesenchymal stem cells' morphology and proliferation.” Biomaterials Science. 6, 1109-1119. 

    https://doi.org/10.1039/C7BM00853H 

  9. Sthanam L.K., Saxena N., Mistari V., Roy T., Jadhav S., Sen S., “Initial priming on soft substrates enhances subsequent  topography-induced neuronal differentiation in ESCs but not in MSCs,” ACS Biomaterials Science & Engineering, 2018.   

    https://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00313 

  10. Kumar, S., Das, A., Sen, S., “Multi-compartment cell-based modeling of confined migration:  regulation by  cell intrinsic  and extrinsic factors,” Mol. Biol. Cell, 2018. 15. 

    https://doi.org/10.1091/mbc.E17-05-0313 

  11. George E., Barai A., Shirke P., Majumder A., Sen S., "Engineering Interfacial Migration by Collective Tuning of Adhesion Anisotropy and Stiffness", Acta Biomaterialia, 2018.

    https://doi.org/10.1016/j.actbio.2018.03.016 

  12. Saxena N., Mogha P., Dash S., Majumder A., Jadhav S.*, Sen S*., "Matrix elasticity regulates mesenchymal  stem cell  chemotaxis", J. Cell Sci. 2018   

    https://doi.org/10.1242/jcs.211391 

  13. Kumar S*., Das A.*, Barai A., Sen S., "MMP secretion rate and inter-invadopodia spacing collectively govern cancer invasiveness", Biophysical Journal, February 2018. 

    https://doi.org/10.1016/j.bpj.2017.11.3777 

  14. Kapoor A.*, Barai A.*, Thakur B., Das A., Patwardhan S. R., Monteiro M., Gaikwad S., Bukhari A., Mogha P., Majumder A., De A., Ray P.#, Sen S.#, "Soft drug-resistant ovarian cancer cells migrate via two distinct mechanisms utilizing myosin II-based contractility", BBA Molecular Cell Research, February 2018. 

    https://doi.org/10.1016/j.bbamcr.2017.11.012 

  15. Mundhara, N., Majumder, A., and Panda, D. (2019). “Methyl-β-cyclodextrin, an actin depolymerizer  augments the  antiproliferative  potential of microtubule-targeting agents.” Scientific reports, 9(1), 7638.

    https://doi.org/10.1038/s41598-019-43947-4 

  16. Dhaked, H. P., Ray, S., Battaje, R. R., Banerjee, A. and Panda, D. (2019). Regulation of Streptococcus pneumoniae FtsZ  assembly by divalent cations: paradoxical effects of Ca2+ on the nucleation and bundling of FtsZ polymers. FEBS J. 2019,   

    https://doi.org/10.1111/febs.14928 

  17. Rane, J. S., Kumari, A., and Panda, D. (2019). “An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity  by enhancing tau aggregation and inhibiting tubulin polymerization.” Biochemical Journal, 476(10), 1401-1417.   

    https://doi.org/10.1042/bcj20190042 

  18. Bhattacharya, D., Sinha, K., and Panda, D. (2018). “Mutation of G51 in SepF impairs FtsZ assembly promoting ability of SepF and retards the division of Mycobacterium smegmatis cells.” Biochemical Journal, 475(15). 2473-2489.  

    https://doi.org/10.1042/bcj20180281 

 

2019-2020:
  1. Surendra Kumar Verma, Akshay Modi, Ashwain Dravid, Jayesh Bellare “Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and functions”. RSC Advances, 8 (51) 29078-29088 

    https://doi.org/10.1039/c8ra02282h 

  2. Kumar, S., Das, A., Sen, S., “Multi-compartment cell-based modeling of confined migration: regulation by cell intrinsic  and extrinsic factors,” Mol. Biol. Cell, 2018. 15. 

    https://doi.org/10.1091/mbc.e17-05-0313 

  3. George E., Barai A., Shirke P., Majumder A., Sen S., “Engineering Interfacial Migration by Collective Tuning of Adhesion Anisotropy and Stiffness", Acta Biomaterialia, 2019. 

    https://doi.org/10.1016/j.actbio.2018.03.016 

  4. Mundhara, N., Majumder, A., and Panda, D. “Methyl-β-cyclodextrin, an actin depolymerizer augments  the antiproliferative  potential of microtubule-targeting agents.” Scientific reports, 9(1), 7638.

    https://doi.org/10.1038/s41598-019-43947-4

  5. Dhaked, H. P., Ray, S., Battaje, R. R., Banerjee, A. and Panda, D. “Regulation of Streptococcus  pneumoniaeFtsZ  assembly by divalent cations: paradoxical effects of Ca2+ on the nucleation and bundling of FtsZ polymers.” FEBS J., 

    https://doi.org/10.1111/febs.14928 

  6. Rane, J. S., Kumari, A., and Panda, D. “An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization.” Biochemical Journal, 476(10), 1401-1417. 

    https://doi.org/10.1042/bcj20190042 

 

2020-21:
  1. Rane, J.S., A. Kumari, and D. Panda, “The Acetyl Mimicking Mutation, K274Q in Tau, Enhances the  Metal Binding  Affinity of Tau and Reduces the Ability of Tau to Protect DNA. ACS Chemical Neuroscience, 2020. 11(3): p. 291-303.  

    https://doi.org/10.1021/acschemneuro.9b00455 

  2. Rane, J.S., A. Kumari, and D. Panda,“An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization.” Biochem J, 2019. 476(10): p. 1401-1417. 

    https://doi.org/10.1042/bcj20190042 

  3. Chavan, S.S. and H.K. Bagla, “Alpha track detection study on CR-39 from granitic wastes employing tetraethyl ammonium bromide as chemical etchant.” Journal of Radioanalytical and Nuclear Chemistry, 2020. 325(3): p. 823-830. 

    https://link.springer.com/article/10.1007/s10967-020-07259-6 

  4. Siddiquie, R.Y., et al., “Anti-Biofouling Properties of Femtosecond Laser-Induced Submicron Topographies on Elastomeric Surfaces.” Langmuir, 2020. 36(19): p. 5349- 5358.

    https://doi.org/10.1021/acs.langmuir.0c00753 

  5. Poojari, R., et al., “Antihepatoma activity of multifunctional polymeric nanoparticles via inhibition of microtubules and tyrosine kinases.” Nanomedicine (Lond), 2020. 15(4): p. 381-396. 

    https://doi.org/10.2217/nnm-2019-0349 

  6. Dinda, S.K., S. Polepalli, and C.P. Rao, “Binding of Fe(ii)-complex of phenanthroline appended  glycoconjugate  with  DNA, plasmid and an agglutinin protein.” New Journal of Chemistry, 2020. 44(27): p. 11727-11738. 

    https://pubs.rsc.org/en/content/articlelanding/2020/nj/d0nj01524e#!divRelatedContent&articles 

  7. Adhyapak, P., et al., “Dynamical Organization of Compositionally Distinct Inner and Outer Membrane Lipids of Mycobacteria.” Biophys J, 2020. 118(6): p. 1279-1291. 

    https://doi.org/10.1016/j.bpj.2020.01.027 

  8. Sharma, K., et al., “Effect of Disease-Associated P123H and V70M Mutations on beta- Synuclein Fibrillation.” ACS Chem Neurosci, 2020. 11(18): p. 2836-2848. 

    https://doi.org/10.1021/acschemneuro.0c00405 

  9. Bhatia, E. and R. Banerjee, “Hybrid silver-gold nanoparticles suppress drug resistant polymicrobial  biofilm formation  and intracellular infection.” J Mater Chem B, 2020. 8(22): p. 4890-4898.

    https://doi.org/10.1039/D0TB00158A 

  10. Shashank, B.S., et al., “Investigations on biosorption and biogenic calcite precipitation in sands.” Soil Use and Management, 2020. n/a(n/a). 

    https://doi.org/10.1111/sum.12611 

  11. Mundhara, N., A. Majumder, and D. Panda, “Methyl-beta-cyclodextrin, an actin depolymerizer augments  the antiproliferative  potential of microtubule-targeting agents.” Sci Rep, 2019. 9(1): p. 7638.

    https://doi.org/10.1038/s41598-019-43947-4 

  12. Mishra, M. and S. Kapoor, “Modulation of host cell membrane nano-environment by mycobacterial glycolipids: Involvement of PI(4,5)P2 signaling lipid?” Faraday Discussions, 2020. 

    https://doi.org/10.1039/d0fd00051e 

  13. Mishra, M., et al., “Mycobacterium Lipids Modulate Host Cell Membrane Mechanics, Lipid Diffusivity, and Cytoskeleton  in a Virulence-Selective Manner.” ACS Infect Dis, 2020. 6(9): p. 2386-2399. 

    https://doi.org/10.1021/acsinfecdis.0c00128 

  14. Mishra, M., et al., “Mycobacterium Lipids Modulate Host Cell Membrane Mechanics, Lipid Diffusivity, and Cytoskeleton  in a Virulence-Selective Manner.” ACS Infect Dis, 2020. 6(9): p. 2386-2399. 

    https://doi.org/10.1021/acsinfecdis.0c00128 

  15. Sadgar, A.L., T.S. Deore, and R.V. Jayaram, “Pickering Interfacial Catalysis- Knoevenagel Condensation in Magnesium  Oxide-Stabilized Pickering Emulsion.” Acs Omega, 2020. 5(21): p. 12224-12235.     

    https://doi.org/10.1021/acsomega.0c00819 

  16. Behera, T., et al., “Spatially correlated photoluminescence blinking and flickering of hybrid-halide perovskite micro-rods.” Journal of Luminescence, 2020. 223: p. 117202.

    https://doi.org/10.1016/j.jlumin.2020.117202 

  17. Pratihar, S., et al., “Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods.” Polymer Composites, 2020. 41(8): p. 3351-3363.                    

    https://doi.org/10.1002/pc.25624 

  18. Dadhich, R., et al., “A Virulence-Associated Glycolipid with Distinct Conformational Attributes: Impact on Lateral  Organization of Host Plasma Membrane,” Autophagy, and Signaling. ACS Chem Biol, 2020. 15(3): p. 740-750. 

    https://doi.org/10.1021/acschembio.9b00991 

  19. Mehra, S., et al., “α-Synuclein aggregation intermediates form fibril polymorphs with distinct prion-like properties.”  bioRxiv, 2020: p. 2020.05.03.074765. 

    https://doi.org/10.1016/j.jmb.2022.167761 

  20. Sushma S.C. , Hemlata K. B., Comparative on alpha Track detection from phosphate fertilizer industrial effluent  employing polymeric solid state Nuclear Track Detector.” Alochana Chakra Journal, Volume IX, Issue V, May/2020. ISSN No. 2231-3990. 

    https://kccollege.edu.in/wp-content/uploads/2021/08/2019-20_Sushma-Chavan_SSNTD-Application_ACJ_2020.pdf 

  21. Dutta, S., et al., “Chemical evidence of preserved collagen in 54-million-year-old fish vertebrae.” Palaeontology, 2020. 63(2): p. 195-202.  

    https://doi.org/10.1111/pala.12469 

  22. Kumari, P., A. Modi, and J. Bellare, “Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative.”  Separation and Purification Technology, 2020. 235: p. 116199. 

    https://doi.org/10.1016/j.seppur.2019.116199 

  23. Mukherjee, A., et al., “Nuclear Plasticity Increases Susceptibility to Damage During Confined Migration.” bioRxiv, 2020: p. 2020.01.18.911529.  

    https://doi.org/10.1371/journal.pcbi.1008300 

 

2021-22:
  1. Singh, D., P. Singh, A. Pradhan, R. Srivastava, and S.K. Sahoo, “Reprogramming Cancer Stem-like Cells with Nanoforskolin  Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer.” ACS Appl Bio Mater, 2021. 4(4): p. 3670-3685 

    https://doi.org/10.1021/acsabm.1c00141

  2. Mukherjee, S. and D. Panda, “Contrasting Effects of Ferric and Ferrous Ions on Oligomerization and Droplet Formation  of Tau: Implications in Tauopathies and Neurodegeneration.” ACS Chem Neurosci, 2021. 12(23): p. 4393-4405.  

    https://doi.org/10.1021/acschemneuro.1c00377

  3. Pradhan, A., S. Mishra, A. Surolia, and D. Panda, “C1 Inhibits Liquid-Liquid Phase Separation and Oligomerization of Tau  and Protects Neuroblastoma Cells against Toxic Tau Oligomers.” ACS Chem Neurosci, 2021. 12(11): p. 1989-2002. 

    https://doi.org/10.1021/acschemneuro.1c00098

  4. Sthanam, LK, Roy T, Patwardhan S, Shukla A, Sharma S, Shinde PV, Kale HT, Shekar PC, Kondabagil K, Sen S*, “MMP modulated differentiation of mouse embryonic stem cells on engineered cell derived matrices”, Biomaterials, 2021, 121268. 

    https://doi.org/10.1016/j.biomaterials.2021.121268

  5. Patwardhan S*, Mahadik P, Shetty O, Sen S*, “ECM stiffness-tuned exosomes drive breast cancer  motility through thrombospondin-1”,  Biomaterials, 2021, 279: 121185. 

    https://doi.org/10.1016/j.biomaterials.2021.121185

  6. Barai A, Mukherjee A, Das A, Saxena N, and Sen S*, “α-ctinin-4 drives invasiveness by regulating myosin IIB expression and myosin IIA localization”, J. Cell Sci, 2021: jcs.25858. 

    https://doi.org/10.1242/jcs.258581

  7. Asadullah…., Kumar S # *, Saxena N, Sarkar M, Barai A, Sen S*, “Combined heterogeneity in cell size and deformability  promotes  cancer invasiveness”, J. Cell Sci., 2021, jcs.250225 

    https://doi.org/10.1242/jcs.250225

  8. Jahan I, Pandya J, Munshi R, Sen S*, “Glycocalyx disruption enhances motility, proliferation and collagen synthesis  in diabetic fibroblasts”, BBA Mol. Cell Res., 2021, 1868(4):118955.

    https://doi.org/10.1016/j.bbamcr.2021.118955

  9. Shirke et al., “Viscotaxis”- Directed Migration of Mesenchymal Stem Cells in Response to Loss Modulus Gradient”,  2021,  Acta Biomaterialia, 135, pp 356-367. 

    https://doi.org/10.1016/j.actbio.2021.08.039

  10. Mundhara, N., et al., “Hyperthermia induced disruption of mechanical balance leads to G1 arrest and senescence in cells”, 2021 Biochemical Journal, 478, pp 179–196. 

    https://doi.org/10.1042/bcj20200705

  11. Shetty, S., A.M. Shanmugharaj, and S. Anandhan, “Physico-chemical and piezoelectric characterization of electroactive nanofabrics based on functionalized graphene/talc nanolayers/PVDF for energy harvesting.” Journal of Polymer  Research, 2021. 28(11): p. 419. 

    https://doi.org/10.1007/s10965-021-02786-6

 

2022-23:
  1. Venkatramani, A., S. Mukherjee, A. Kumari, and D. Panda, “Shikonin impedes phase separation  and  aggregation  of tau  and protects SH-SY5Y cells from the toxic effects of tau oligomers.” Int J Biol Macromol, 2022. 204: p. 19-33.  

    https://doi.org/10.1016/j.ijbiomac.2022.01.172

  2. Mishra, M. and S. Kapoor, Chapter 5 – “Multifaceted roles of mycobacterium cell envelope glycolipids during host cell membrane interactions, in Biology of Mycobacterial Lipids,”  Z.  Fatima  and  S.  Canaan,  Editors.  2022,  Academic Press.  p. 105- 131. 

    https://doi.org/10.1016/B978-0-323-91948-7.00004-X

  3. Chowdhury, M., M. Madhusudanan, and J. Sarkar. “Conflicting role of plasticization in nanorheology of out-of-equilibrium thin polystyrene films.” 

    https://ui.adsabs.harvard.edu/abs/2022APS..MARA17005C/abstract

  4. Adhyapak, P., et al., “Lipid Clustering in Mycobacterial Cell Envelope Layers Governs Spatially  Resolved  Solvation  Dynamics.”  Chemistry – An Asian Journal, 2022. 17(11): p. e202200146. 

    https://doi.org/10.1002/asia.202200146

  5. Singh, B., et al., “Fabrication and cytotoxicity evaluation of polyethyleneimine conjugated  fluorescent  MXene  nanosheets  as cancer theranostics agent.” Polymer Bulletin, 2022. 

    https://doi.org/10.1007/s00289-022-04627-y

  6. Menon, A.P., et al., “Mutually Exclusive Interactions of Rifabutin with Spatially Distinct Mycobacterial Cell Envelope Membrane Layers Offer Insights into Membrane-Centric Therapy of Infectious Diseases.” ACS Bio & Med Chem Au, 2022. 2(4): p. 395-408.  

    https://doi.org/10.1021/acsbiomedchemau.2c00010

 

2023-24 :
  1. Madhusudanan, M., et al., “Tuning the Plasticization to Decouple the Effect of Molecular  Recoiling Stress  from Modulus  and Viscosity in Dewetting Thin Polystyrene Films.” Macromolecules, 2023. 56(4): p. 1402-1409.

    https://doi.org/10.1021/acs.macromol.2c02093

  2. Mogha, P., S. Iyer, and A. Majumder, “Extracellular matrix protein gelatin provides higher  expansion,  reduces size heterogeneity, and maintains cell stiffness in a long- term culture of mesenchymal stem cells.” (1532-3072 (Electronic)). 

    https://doi.org/10.1016/j.tice.2022.101969

  3. Singh, B., et al., “Preclinical safety assessment of red emissive gold nanocluster conjugated crumpled MXene nanosheets: a dynamic duo for image-guided photothermal therapy.”  Nanoscale, 2023. 15(6): p. 2932-2947. 

    https://doi.org/10.1039/D2NR05773E

  4. Singh, B., et al., “Synthesis and degradation mechanism of renally excretable gold core– shell nanoparticles for combined photothermal and photodynamic therapy.” Nanoscale, 2023. 15(3): p. 1273-1288. 

    https://doi.org/10.1039/D2NR05283K

  5. Maity, S., A. Sasmal, and S. Sen, “Barium titanate based paraelectric material incorporated Poly (vinylidene fluoride) for biomechanical energy harvesting and self- powered  mechanosensing.”  Materials Science in  Semiconductor  Processing,  2023. 153: p. 107128. 

    https://doi.org/10.1016/j.mssp.2022.107128

  6. Pradeep, D., et al., “An Assessment of the Piezoelectric Coefficient and the Therapeutic Potential of Ionic Liquid (Il) Dissolved Hard Keratin from Goat Horn Discards.” RASAYAN Journal of Chemistry, 2022. 15(04): p. 2914-2921 

    http://doi.org/10.31788/RJC.2022.1546998

 

2024-25:
  1. Sarkar, J., et al., “Roles of aqueous nonsolvents influencing the dynamic stability of poly-(n-butyl methacrylate) thin films at biologically relevant temperatures.” Soft Matter, 2023. 19(42): p. 8193-8202. 

    https://doi.org/10.1039/D3SM00812F

  2. Madhusudanan, M. and M. Chowdhury, “An entropy generation approach to the molecular  recoiling stress  relaxation  in thin nonequilibrated polymer films.” The Journal of Chemical Physics, 2024. 160(1): p. 014904.

    https://doi.org/10.1063/5.0185728

  3. Madhusudanan, M., et al., “Tuning the Plasticization to Decouple the Effect of Molecular  Recoiling Stress  from Modulus  and Viscosity in Dewetting Thin Polystyrene Films.” Macromolecules, 2023. 56(4): p. 1402-1409. 

    https://doi.org/10.1021/acs.macromol.2c02093

  4. Jahan, K., et al., “Identification of ethyl-6-bromo-2((phenylthio) methyl) imidazo[1,2- a]pyridine-3-carboxylate as a  narrow spectrum inhibitor of Streptococcus pneumoniae and its FtsZ.” (1768-3254 (Electronic)). 

    https://doi.org/10.1016/j.ejmech.2024.116196

  5. Venkatramani, A., A. Ashtam, and D. Panda, “EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation:  Implications in Tauopathies.” ACS Chemical Neuroscience, 2024. 15(6): p. 1219-1233.

     https://doi.org/10.1021/acschemneuro.3c00815

  6. Patra, U., F. Mujeeb, and S. Dhar, “Vapor–Liquid–Solid-Mediated Layer-by-Layer Growth of Stepped-Wedge Shaped  WS2  Microribbons Using the Chemical Vapor Deposition Technique.” Crystal Growth & Design, 2024. 24(4): p. 1626-1631. 

    https://doi.org/10.1021/acs.cgd.3c01253

  7. Piplani, N., et al., “Bulky glycocalyx shields cancer cells from invasion-associated stresses.” Translational Oncology, 2024. 39: p. 101822. 

    https://doi.org/10.1016/j.tranon.2023.101822